Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-
Physical Computing Domains

Eduardo Quinones
{eduardo.quinones@bsc.es}

ACACES, Fiuggi, 2021,12-18 Sep




What are your expectations on this course?
(or why did you choose this course?)

Goal of this course:

Understanding the benefits and the research challenges of
applying task-based parallel programming models (OpenMP
and COMPSs) when developing Cyber-Physical Systems
(CPS)

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 2 C T



1. Introduction

- Cyber-Physical Systems (CPS)

— Task-Based Parallel Programming Models: OpenMP and COMPSs
2. Lesson 2: OpenMP

— API, execution model and memory model

- Challenges of applying OpenMP to CPS
3. Lesson 3: OpenMP and CPS

— Functional correctness and time predictability
. OpenMP tracing

- Model driven engineering and OpenMP
4, Lesson 4: Distribution across the compute continuum: COMPSs
— API, execution model and memory model

— Functional correctness and time predictability
COMPSs tracing

- A real CPS: A smart mobility application

ACACES 2021, Fiuggi, Eduardo Quifiones 3



Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

©

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-
Physical Computing Domains

Lesson 1: Introduction

Eduardo Quinones
{eduardo.quinones@bsc.es}

ACACES 2021, Fiuggi




* Cyber-Physical Systems (CPS)
— Requirements and computing infrastructure
— Types of CPS
— Software development complexity

e Task-based Parallel Programming Models

— Introduction to parallel programming models
— OpenMP and COMPSs
— Model Driven Engineering

ACACES 2021, Fiuggi, Eduardo Quifiones 5

Barcelona

Supercomputing

Center

ot N (0 Soge e A



A

6 3 Cyber-Physical
Computing Spectrum Systems (CPS)

High Performance
Computing (HPC)
Systems

Network of HW/SW
components (cyber) that must
operate correctly in response to
its (physical) inputs from a
functional and non-functional
perspective

Massive parallel systems
that operates as fast as

possible

Performance becomes as important as
other non-functional requirements!

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 6 C Contar




* CPS integrates the computation, networking and
physical processes

— Non-functional requirements (NFR) are inherited from the
Cyber-physical interactions

* Embedded systems are typically responsible of the
control part of the CPS

— Embedded systems must fulfil the NFR from CPS

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 7 (( T



Non»-fnctlo%_l—li_eqwrer;_e_r}g (th

* I|Inherited due to the cyber-physical interactions, e.g.,
— Real-time: The end-to-end response time (from sensor to actuator) must
be within a given time budget

— Power/Thermal: The energy/temperature of the computing elements
must be within a given budget due to power supply/operational
environment limitations

— Safety: CPS must be built guaranteeing the correctness and integrity of its
operation

— Security: CPS must prevent external elements not to affect the correctness
and integrity of the system
* Performance: CPS must provide the computing power to
implement advanced functionalities

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 8 ( Comter



10" | : ! : g # | Transistors .
6 ! A . B (thousands) <:|
10 B o :A&A S ’ ]
‘ ‘ o hadmas _ Heterogeneous and
10 VRS SUIS———— S———————— s Anata e Single-Thread .
‘ | gt :”3' :..'.o. (F’Serforlnl\]grncios) Parallel computing
T — il IS | (SpENT A |
3 | wphl e Ittt o | Froquency (i) b(?comes key to cope
107 [ T “ e ;“-! T = T with performance
2 A a B "‘-' S A ;}'v%‘# o V)\/,plca ower :
10 :.i. v-' Vv'v'JV?Vv WS g :‘ ( atts) reqUIrementS
fLo T m EE TN T e | Numberot (T
10° L I ols ¥ ¥ AV B | Logical Cores
10° —i: Z: rrrrrr i .::«::«wm:i‘.”“‘ -
l | | : |
1970 1980 1990 2000 Y 2010 2020

Vear Irruption of multi-cores

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

ACACES 2021, Fiuggi, Eduardo Quifiones 9 ((



NVIDIA A100
(GPU-based)

Intel Xeon Series
(40-core fabric)

CPS takes full benefit of heterogeneous
computing due to the dedicated
accelerators and low power consumption

ACACES 2021, Fiuggi, Eduardo Quifiones 10

NVIDIA Jetson Family
(GPU-based)

Kalray MPPA Coolidge
(80-core fabric)

Xilinx Versal
(GPU- and FPGA-based with
dynamic partial reconfiguration)



Architettures

Host-centric paradigm: The parallel computation is orchestrated
by the general-purpose multi-core

Accelerator for optimized
graphical processing, linear
algebra and deep learning

General purpose multi-core for
control-flow applications and
parallel orchestration

Optimised HW functions

Network on Chip (NoC)

ACACES 2021, Fiuggi, Eduardo Quifiones

TPU/GPU

—> S
(Accelerator) (Accelerator)

. Multi-core
(Host)

<+

Viemory
HW || HW || HW
func || func || func
—’
Peripherals
11

T

Reconfigurable logic
including dynamic partial
reconfiguration

Addressable memory by the
different computing elements

Interface with the
(physical) world

Barcelona

Supercomputing

Center

Gty Mo e Sogr compe Aee wien



T edia '—‘—T'L_.—_ R — e

TPU/GPU

(Accelerator) Accelerator]

. . . Multi-core
CPS is suitable for lIoT and edge computing -
paradigms | .

z e ——— - — T— e o
Compue Continuum: From Edge to E CF
| eripherals | RS

* The computation is selectively move ll'
close to the data-sources so decision- il i
making occurs as close as possible

— Enables faster real-time processing, higher
privacy control and lower network costs

— The use of powerful heterogeneous
embedded processor architectures
becomes fundamental

* Cloud computing is used to execute
computational intensive and batch

processes

>

whnnuijuo) ajhdwo)

ACACES 2021, Fiuggi, Eduardo Quifiones




—

Tw—cj;"c:—ﬂ s of CﬁS

* Tighly-couple CPS

— Subsystems execute within the same processors or in a
controlled (and reliable) network of few processors (e.g.,
automotive domain)

* Loosely-couple CPS

— Subsystems execute within a non-reliable network of
heterogenous computing elements, i.e., the compute
continuum (e.g., smart cities)

— Some subsystems may implement tighly-couple CPS

Bascelona
ACACES 2021, Fiuggi 13 (( - J



An Adavanced Driving Assistant System (ADAS) used to identify
objects in front of vehicles and detect potential collisions

Elaborate Sensors raw data Tracking and Fusion
Sensors Module Module

\
N
I
1
TPU/GPU 1
(Accelerator) | (Accelerator) : :
-‘ ) . > Spatial »| Object
Multi-core ||| Synchronization detection
(Host) : :
I
I
Il
)

Tracking
System

Memory
HW || HW || HW
func || func || func

‘ Peripherals ‘ Camera

|

| Peripherals | HW TPU/GPU Multi-core (Host)
ii’;" @ (Accelerator)

ACACES 2021, Fiuggi, Eduardo Quifiones 14 ((



aam__zﬁ—:r'

y Collision Detection

% Sensing capabilities of vehicles and cities can be combined to
=% identify hazardous situations

Compute Continuum

\ 4

|_% —»| Detection

UEEAITE Object Hazard
aggreg detection

|_% — Detection

\ 4

Tracking

{01100 O,
41101000 O11.

101100 0117
Connected Car CLOUD

J

ACACES 2021, Fiuggi, Eduardo Quifiones 15 ((



—J

Example:— ____:rfr.l___

y Collision Detection

Sensing capabilities of vehicles and cities can be combined to
identify hazardous situations

Compute Continuum

4 )
Streetlight |_% |_%
|_%—> Detection —* Tracking Object Hazard o
aggre detection
|_%—> Detection —> Tracklng gg‘;‘ g Tracking Wif ‘
P — I Eth aggreg I detection
= | Wifi lEth
& es —mn |LTE
'«‘*“m“*”“‘“]{% > Object | Hazard
= o .
~ ~ aggreg | detection
Connected Car CLOUD
J
ACACES 2021, Fiuggi, Eduardo Quifiones 16 (( Comtar



e

How \ ould %Eaévelop?uch 3 1 |

1. Exploit the parallel performance reclertor
capabilities of _the (different)
processor architectures o | (S

2. Efficiently distribute the data- | peripherals |
analytics workflow across the Compute Continuum
compute continuum (Streetlight 1M Tram Stop | W |

3. Guarantee functional correctness
and the non-functional

Eth
requirements of the CPS =
<l 4

1101100 o117

Connected Car CLOUD
ACACES 2021, Fiuggi, Eduardo Quifiones 17 \§ J
AN .

) N 0 Sz crepe e i



Lines of code/chip

A x2 every 10 months
log
Q\eﬁ;\\\! A

o< Transistors/chip

0,\\\@(8 o) oYy X2 every 18 months
> el Software
C) .-
s Productivity Gap

~__ Lines of code/day

tivity W,
Software produc L X2 every 5 years

L] L] L] L] L] >
1990 1995 2000 2005 2010 2015

Source: ITRS & Hardware-dependent Software, Ecker et al., Springer

ACACES 2021, Fiuggi, Eduardo Quifiones 18

This course will present the task-

based parallel programming

model to efficiently:

1. Exploit parallelism

2. Distribute computation
across the compute
continuum

3. Reason about the functional
and non-functional
correctness

Barcelona

Supercomputing

Center

i) Mo e S g A i




e Cyber-Physical Systems (CPS)
— Requirements and computing infrastructure
— Types of CPS
— Software development complexity

* Task-based Parallel Programming Models

— Introduction to parallel programming models
— OpenMP and COMPSs
— Model Driven Engineering

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 19 (( —y —



* Aset of programming elements to describe the parallel
behaviour of an application and abstract the
complexities of the underlying parallel platform

— Granularity level of parallelism exploited: instruction,
statement, loop, procedural

— Synchronization model: coarse-grain, fine-grain
— Execution model: fork-join, thread-pool, etc.
— Memory model: Shared, distributed

e Commonly built on top of a base programming language

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 20 (( —y —



- e = ~
e —— — e

parallel rogramming'l\/lodels_

 Mandatory to enhance productivity

— Programmability. Abstracts the parallelism while
hiding the underlying computing platform
complexities

— Portability/scalability. The same source code is
valid in different parallel platforms

— Performance. Rely on run-time mechanisms to
exploit the performance capabilities of parallel
platforms

| Parallel Programming Models |

| Conventional Models |

v s

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 21 (( —y —




] —

s ———-——

Types IJ ParaIIeI Prograr;alﬁ:g I\/I

* Hardware-centric

— Provide a user-friendly interface to tune the application to native platform features,
e.g., NVIDIA CUDA

— None portable
* Application-centric

— The application must fulfill the execution model to exploit parallelism, e.g. OpenCL

— May require a full rewriting process of the application, impacting on programmability
* Parallelism-centric

— Parallelism is expressed by means of constructs various levels of abstraction, e.g.
POSIX threads, OpenMP, OpenACC, MPI, COMPSs, Spark, Ray

— This approach allows flexibility and expressiveness, while decoupling design from
implementation

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 22 C Comter



s =y

Typé ;—'a rallelism

e Structured parallelism: The parallel
execution follows a regular pattern
— Very suitable for parallel loops
— E.g., fork-join, pipeline
e Unstructured parallelism: The
parallel execution does not fit
within a pattern, or it change
dynamically

— Suitable for procedural-level
parallelism

— E.g., tasking

ACACES 2021, Fiuggi, Eduardo Quifiones

parallel for (i=LB; i<UB; ++i) o JOrk

do computation () ;
endfor

Distribute the loop iteration

among parallel units (threads)

Distribute tasks among
parallel units (threads)

v

task :
do computation 1();
endtask

. join

task

do computation N{();
endtask

23

v



TIOBE Programming Community Index

Source: www.tiobe.com

25

20

15

Ratings (%)

10 N\_‘\’
A

N , oV o

2012 2014 2016 2018 2020
C == Python Java C++ | ==C# == Visual Basic
JavaScript == PHP == Assembly language sQL

ACACES 2021, Fiuggi, Eduardo Quifiones

24

Base Type of Type of Type of
Language PPM architect Parallelism
HW-

CUDA C/C++, NVIDIA GPU  Struct/
Python centric Unstruct
OpenCL C/C++ App- GPU/ Struct
centric FPGAs
OpenMP C/C++ Parallel- Shared Struct/
centric mem Unstruct
Pthreads C/C++ Parallel- Shared Unstruct
centric mem
MPI C/C++, Parallel- Distributed Unstruct
Python centric mem
COMPSs C++, Java Parallel- Distributed Unstruct
Python centric mem
Spark Java, Parallel- Distributed Struct
Python centric mem
Ray C++,Java Parallel- Distributed Unstruct
Python centric mem




* Mature language constantly reviewed (last release Nov 2020, v5.1)
— Defacto industrial standard in HPC
— Active research community with an increasing interest on the CPS domain

* Productivity in parallel programming

— Performance
* Exploitation of structured and unstructured fine-grain parallelism coupled with an advanced accelerator model

* Powerful task-based model supporting fine-grain synchronization mechanisms based on data-dependencies
among tasks

* Performance analysis tools of the parallel execution

— Portability
* Supported by many chip vendors used in CPS (Intel, IBM, ARM, NVIDIA, Tl, Gaisler, Kalray)

— Programmability

* Interoperability with other programming models (e.g., CUDA, OpenCL)
* Allows incremental parallelization (#pragma omp) that can be easily compiled sequentially

ACACES 2021, Fiuggi, Eduardo Quifiones ((



* Programming distribute framework highly inspired in the OpenMP tasking model
— Programs are written sequentially in Python, Java or C++
— The code is annotated to describe asynchronous procedures (task) than can execute in parallel
* Includes a fine-grain synchronization mechanism based on data dependencies among tasks
* Productivity in distributed programming

— Performance
* Exploitation of distributed computation in heterogeneous HPC and edge/cloud environments
* Powerful performance analysis tool of the distributed execution

— Portability
* Supports many HPC and cloud technologies: DFS, Docker, Kubernetes, Serverless, etc.

— Programmability

* Interoperability with other programming models (e.g., OpenMP)
* Currently available for Python, Java and C++
* Allows incremental parallelization (@task) to easily execute sequentially

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones (( T



= '—:

Sequential version

void main () { > fOI’k
int x,y; 1. Open I
£1 (&%, &Y) ; parallelism main] |
£2 (%) ; }Executes on the host I £1
£3(y) s Executes on the f2| £3
} accelerator
. jOIn TPU/GPU
OpenMP version (Accelerator)
void main () {
#pragma omp parallel Multi-core
fipragma omp master @—— (Host)
{ ' ory
e s 2.TtahsksheXfcuted W CEW FRV “
rys on e NosS
#pragma omp task depend(out:x,y) fune | fune J L func
{ fl(&x,&y); } ;
#pragma omp task depend(in:x)‘— l I I
{ f2(x); }
#pragma omp target map(to:y) depend(in:y)@
{ £3(y); } 3. Tasks executed on the host and

}
AEACES 2021, Fiuggi, Eduardo Quifiones

M

accelerator when f1 completes ((

) N e g e A e



-

Sequential version COMPSs version

def f1(): @task (x=0UT, y=0UT) @
def f1(): Compute Continuum

return x,vy
def f2(x): return x,y

Streetllght F” ‘Tram Stop l-”
@task (x:IN) ‘ | "I ’mu
def £3(y) def £2(x):

def main () :

Qtask (y=IN) @

x,y=fl
f;(lx) 0 def £3(y) Tasks executed lEth
£3(y) " across the compute i P
def main <) : 1 41101000 011
— continuum y
rY () 1101100 0117
£2(x) \Connected Car CLOUD )
£3(y) ?

|_% Detection Tracking .
—0 S cetoaion
|_~—>| Detection H Tracking gasd

)

main f£f1 £2 £3 (( ~— S—



—a

Principle behind Tasking IVIodE

* Tasking provides a great expressiveness to describe the parallel
nature of applications

— Developers specify what the application does and not how it is done

— The parallel framework is responsible of orchestrating the execution

* Tasking facilitates programmability, but ...

— ... complicates deriving functional and
non-functional correctness

Computation is not fully controlled by the

programmer but by the parallel framework

wys .
ACACES 2021, Fiuggi, Eduardo Quifiones I'm a software engineer, so I can confirm
it works by magic.



e e —

I\/Ia[h Factors Impacting ParaIIeI Exec EF i

COMPSs version OpenMP version ;
@task (x=OUT , y=OUT) void main() {
def f1(): #pragma omp parallel mainl
#pragma omp master I £1
return x,y { 5
@task (x=IN) int x,y; f2l £3
def f2(x): #pragma omp task depend(out:x,y) 5
. { £1(sx,8y); )
@task (y=IN) main f1 £2 £3 fP‘f’;G(JmT'OTP task depend (in:x)
f f x)i
de > () #pragma omp target map(to:y) depend(in:y)
def main () : tE3y)i )
x,y=£1()
£2 (x) 1. Parallel structure of the application (including data usage):

£3 (y)
! Task Dependency Graph (TDG) or Direct Acyclic Graph (DAG)

2. The execution and memory model: The Runtime Scheduler
responsible of mapping task to parallel units

ACACES 2021, Fiuggi, Eduardo Quifiones 30




Model Driven Engineering (MDE) in CPS

Logic 1. Construction of complex systems

MDE Controller
(e.g. CAPELLA, .o N . . .

2. Formal verification of functional and non-functional requirements
with composability features

AMALTHEA,
3. Correct-by-construction paradigm by means of code generation

AUTOSAR)
* Suitable only for single-core execution or with very limited multi-core support

Gap between the MDE used for CPS and the PPM supported by parallel platforms

Parallel Programming Models

Parallel Eeey . . .
programming J} R 1. Mandatory for SW productivity in terms of
Models 4 ===+ Parallel Units 4—

parallel (e.g. OpenMP, 3 ; *  Programmability: Parallel abstraction while hiding HW complexities
OpenCL, '.--W..I
CUDA, COMPSs) *  Portability: Compatibility multiple HW platforms

Execution

Model Runtime * Performance: Exploiting parallel capabilities of underlying HW
oo Darale 2. Efficiet offloading to HW acceleration devices for an energy-

efficient parallel execution

Bascelona
Supercomputing
s

ACACES 2021, Fiuggi, Eduardo Quifiones 31 (C Comtor



Logic
MDE Controller
(e.g. CAPELLA,
AMALTHEA,
AUTOSAR)

Bridge 2.
the gap

Parallel == Parallel Units ==,

Programming

Models 4 —g-ee Parallel Units |=+--—
(e.g. OpenMP, kY A
Parallel OpencL. ‘“"W""
Execution CUDA, COMPSs)
Model

Run-time
parallel
frameworks

ACACES 2021, Fiuggi, Eduardo Quifiones

Synthesis methods for an efficient generation of
parallel source code, while keeping non-
functional and composability guarantees

Run-time parallel frameworks that guarantee
system correctness and exploit the performance
capabilities of parallel architectures

Integration of parallel frameworks into MDE
frameworks



1. CPS requires parallel computation to cope with the performance

requirements of the most advanced functionalities, but...

2. ..current parallel frameworks remove from developers the responsibilty of
managing the parallel execution, difficulting deriving guarantees of
functional and non-functional correctness

3. .. most CPS are implemented using model driven engineering approaches

This course will present the benefits and challenges of applying tasking parallel
programming model

» Focus on two specific parallel programming languages: OpenMP and COMPSs
» The same concepts applies to other tasking languages

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 33 ( —y —



f ide

Lesson'1 in one sl

&a;ﬂ 0 1‘1‘

T T .
107 [ - Non-Functional
g firansistors lliissone Lines of code/chip
oL : (thousands) (Host) Me Re uirementsl x2 every 10 months
og a '
10% | _| Single-Thread func || func || func )
Performance \et
4| . | (SpecINT x 10%) \ Peripherals | o Transistors/chip
10 V33 2 E MH X K\\N,a@ |y x2 every 18 months
3 . requency (MHz) Compute Continuum 0 o cOME Software
10 e e Pardte s
a
102 | Lo ; "y Streetlight |.% Productivity Gap
N R ALY . i Lines of code/day
- Number of roductivity
o' r . s = = v, vvv ki Logical Cores Softwars b X2 every 5 years
&g < W im I¥ Sy
10° | g’ b4
Eth T T T T T
1970 1980 1990 o 1990 1995 2000 2005 2010 2015
Year —~ Eth
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotum: & Fammond, and C. Batten —
New plot and data collected for 2010-2017 by K. Rupp 011000,
& 41101000 012,
1101100 O11F
Connected Car CLOUD
Tasking Model ’
Challenge!
pen alienge! MDE Controller
e e (e.g. CAPELLA,
AMALTHEA,
AUTOSAR)

Computation is not fully

COMPSs

controlled by the programmer
but by the parallel framework ((

Bascelona
Supercomputing

Cary w0 S e At




Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

©

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-
Physical Computing Domains

Lesson 2: OpenMP

Eduardo Quinones
{eduardo.quinones@bsc.es}

ACACES 2021, Fiuggi




* OpenMP API

* Execution Model and Memory Model
* Spawning and Distributing Parallelism
* Synchronization and Data-Sharings

e Challenges of applying OpenMP to CPS

e Conclusions

ACACES 2021, Fiuggi, Eduardo Quifiones 36

TPU/GPU

(Accelerator)

Accelerator

Multi-core
(Host)

HW
func

HW
func

HW
func

|

Peripherals ‘

Barcelona
Supercomputing
Center ‘



——-——-

Op enP API )

Compiler directives #pragma omp parallel num threads (4)

e Annotations in the source code ted

* Can be easily ignored by the compiler, allowing for incremental parallelization
e Directives can include clauses to define properties of the directive

Runtime library routines omp set num_ threads (4) ;

 Get/Set runtime information from source code

Environment variables sh$ OMP NUM THREADS=4 ./openmp exec

e Set runtime information at execution time

ACACES 2021, Fiuggi, Eduardo Quifiones 37 ((



e

E‘xec:a—ﬂ Model: Forka)

e

oin

together with worker threads, fo

Parallel region 1
(team)

Serial part

Serial part

rm a team

Parallel region 2
(team)

ACACES 2021, Fiuggi, Eduardo Quifiones

OpenMP programs start execution with a unique initial thread

Worker threads are spawned in parallel regions (#pragma omp parallel)
The thread encountering a parallel region becomes the master thread, and

Worker threads are destroyed (or put to sleep) between parallel regions

Initial thread

Serial part === Master thread
o0—— ———  Worker thread
_____ === Sleeping worker
Join (( .



— - e - T__:

—— ——— ————

Execumn Model: Fork-Join

(#pragma omp parallel num threads (2)
{

L}

"#pragma omp parallel num threads (4)
{

I }
Parallel region 2
(team)

v
Parallel region 1

(team) ] /“'\ ——— Initial thread
Serial part Jn& Serial part ====  Master thread
T‘:” 7 oO——— . ——— Worker thread
Fork

— Sleeping worker

ACACES 2021, Fiuggi, Eduardo Quifiones Join (( perovmputing



/OpenMP Task

el M;ol—erAbstra\_é:cTc)—n La 1 |

Ready tasks queue

(#pragma omp task)

Team of OpenMP Threads

(#pragma omp parallel num_threads)

OS Threads
(pool of threads)

N OpenMP task to OpenMP

thread scheduler

N OpenMP thread to OS

thread mapping

N OS thread to HW

TPU/GPU
(Accelerator)

scheduler

(Implementation

dependent!)

ACACES 2021, Fiuggi, Eduardo Quifiones

HW Threads/HW Cores [

40

Multi-core
(Host)

HW HW HW
uuuuuuuuu

‘ Peripherals ‘




Different views of the memory thread 1: i thread 2

~E Main memory Shared for all threads

Copy of the main memory for a given
thread and a region of the execution

Temporary view

ﬂ Threadprivate Particular to each thread
memory (not recommended to be used!)

Designed for shared memory nodes (UMA/NUMA)

— Extended for heterogeneous computing nodes, i.e., host + accelerator(s)

The access to variables can be shared or private
— shared, firstprivate, private, lastprivate clauses

* Memory consistency is enforced by (implicit/explicit) flush operations

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 41 ( Spercemputing ‘



- " - L — >

' = ::;:‘;{:l:_______
Spawm Parallelism-

e Parallelism is spawned when a parallel
construct is found {.}

#pragma omp parallel num_threads (2)

— Threads of a team are synchronized when a

) . llel threads (4
barrier construct is found WFEENEY G [PEFEELIGN, it HCEEE ()

{
— There is an implicit barrier at the end of a parallel

region. #pragma omp parallel num_threads (3)

{.)
e Parallel regions can be nested.
 The number of threads suitable for each region
can be defined by the programmer
— Construct clause: num_threads (4)

— Runtime library routine: omp_set num threads (4)
— Environment variable: OMP_NUM THREADS=4

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 42 ( "'c.,’.;.,"’""'"”' ,



ﬁF’é’g i B

( )
#include <iostream> ‘
#include <omp.h>
int main (int argc, charx argvl[])
1
#pragma omp parallel num_threads(4)
{
std::cout << "Hello world" << std::endl;
std::cout << "I am thread" << omp_get_thread_num() * How many messageS?
<< " of " << omp_get_num_threads() .
o @ide: ehdls * In which order?
}
return 0;
}
_ J

ACACES 2021, Fiuggi, Eduardo Quifiones 43 (@
MWOM



iello worldHello world
iello worldI am thread © of Hello world4

[ am thread 2 of 4
[ am thread 1 of 4

[ am thread 3 of 4

Hello world

I am thread 0 of 4

Hello world

I am thread Hello world2 of 4

I am thread 3 of 4
Hello world
I am thread 1 of 4

Hello worldHello world
I am thread ©Hello world
I am thread 1 of 4
of 4
Hello world
I am thread 2 of 4

I am thread 3 of 4

#include <iostream>
#include <omp.h>

Parallel region
(team)

int main (int argc, charkx argv[])

#pragma omp parallel num_threads(4)
{

std::cout << "Hello world" << std::endl;
std::cout << "I am thread" << omp_get_thread_num()
<< " of " << omp_get_num_threads()
<< std::endl;
}
return 0;

}

 How many messages? 4
* In which order? UNDETERMINED

44 (j
M“Ow



§ ’ —
— ‘-"..——-—' ———-——

Di strlutmg ParaIIells

* Thread-centric model
— Conceptual abstraction of user-level threads
— Structured data-parallelism
— Representative constructs: for and sections

* Task-centric model (introduced in v3.0, May 2008)

Focus » — Oblivious of the physical layout

°fthi5' — Structured and unstructured data- and task- parallelism
course:

— Representative constructs: task and taskloop

ACACES 2021, Fiuggi, Eduardo Quifiones 45

» Prescriptive

v' Less overhead

v’ Highly tunable
\§

J

-

> Descriptive

v Dynamic parallelism

v' Fine-grain
synchronization




- -

Parallel loops:

#pragma omp parallel num_ threads(4)
#pragma omp for
for (i=LB; 1<UB; ++1) {

do_computation () ; l
} -
loop-chuncks
. Distribute among threads
Parallel sections: g
structured
#pragma omp parallel num_ threads(4) blocks
#pragma omp sections

{
#pragma omp section
{ do_computation 1(); }

#pragma omp section
{ do_computation N(); }

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 46 (( ':‘c,,’.‘,.,":":":""”



St & -—_‘_l_'_:, ]

or Ibop Schedule cT_seT‘m

static: ho hi Assign a consec-ut/ve block of {terathns
to each thread in a round-robin fashion
static,n: [0 |11 i3 I 3 TETRIEY Define chunk size to enhance load

balance although introducing overhead

Allow threads to fetch chunks as they
tho || thl U [ thl || thO thl | RUEM | thl |[thO are idle; chunck size can be defined as
well

dynamic,n:

Chunk size is proportional to the

guided, n: ho hi h3 IR 1l IFE 1B number of unassigned iterations
- @ D . divided by the number of threads;

chunck size can be defined as well

ACACES 2021, Fiuggi, Eduardo Quifiones 47 (( ‘




\ € iy
% £O <6 & T

100p

[ #include <stdio.h> ) N
#include <stdlib.h> ;
#include <omp.h> ‘
#define N 20
int main (int argc, charx argv[])

{
int 1i;
#pragma omp parallel num_threads(4)
#pragma omp for schedule(static) * How many messages?
for(i=0; i<N; i++) .
{ * In which order?

printf("Thread ID %d - Iter %d\n",
omp_get_thread_num(), 1i);

}
return 0;

}

\ J

ACACES 2021, Fiuggi, Eduardo Quifiones 48 (@
MWOM



R . 9 e . o L

on: for loop

static static static, 2
Thread ID 6 - Iter © Thread ID @ - Iter © ID 3 Iter
Thread ID ®© - Iter 1 Thread ID © - Iter 1 ID 3 Iter
Thread ID © - Iter 2 Thread ID 6 - Iter 2 TDE3 Iter
Thread ID 6 - Iter 3 Thread ID © - Iter 3 1D 3 Iter

= Thread ID © - Iter 4 2

Thread ID 3 - Iter 15 Thread ID 2 - Iter 10 Thread ID 2 - Iter 5
Thread ID 3 - Iter 16 Thread ID 2 - Iter 11 Thread ID 2 - Iter 12
Thread ID 3 - Iter 17 Thread ID 2 - Iter 12 Thread ID 2 - Iter 13
Thread ID 3 - Iter 18 Thread ID 2 - Iter 13 Thread ID 6 - Iter 0
Ihc D23 __ Jfer 19 Thread ID 2 - Iter 14 Thread ID 6 - Iter 1
Thread ID 2 - Iter 10 Thread ID 3 - Iter 15 Thread ID ® - Iter 8
Thread ID 2 - Iter 11 Thread ID 3 - Iter 16 Thread ID @ - Iter 9 * How many messages? 20
Thread ID 2 - Iter 12 Thread ID 3 - Iter 17 Thread ID 6 - Iter 16
Thread ID 2 - Iter 13 Thread ID 3 Iter 18 Thread ID © - Iter 17 .
Thread ID 2 - Iter 14 Thread ID 1 - Iter 2 * |In which order? UNDETERMINED
Thread ID 1 - Iter 5 Thread ID 1 5 Thread ID 1 - Iter 3
Thread ID 1 - Iter 6 Thread ID 1 - Iter 6 Thread ID 1 - Iter 10
Thread ID 1 - Iter 7 Thread ID 1 - Iter 7 Thread ID 1 - Iter 11
Thread ID 1 - Iter 8 Thread ID 1 - Iter 8 Thread ID 1 - Iter 18
Thread ID 1 - Iter 9 Thread ID 1 - Iter 9 Thread ID 1 - Iter 19

ACACES 2021, Fiuggi, Eduardo Quifiones 49 (@
Mwum



e B

D“i—s-tribting parallelism with the task m

#pragma omp parallel num_threads (4) A task (i.e., a task region and

. . . Ready task queue
#pragma omp master its data environment) is
{ generated when a thread
#pragma omp task encounters a task construct
{ do computation 1(); } 55
o - < 4 a A
#pragma omp task v .
{ do_computation N(); } The team of threads executes
! J a set of ready tasks

Scheduling is implementation

(#pragma omp parallel num;threads(4)\ deﬁned
#pragma omp master

{

#pragma omp taskloop

for (i=LB; i<UB; ++1i) A taskloop distributes
do_computation(); iterations across tasks
| ) generated by the construct

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 50 (( —y —



]

= ———
—_— e - —

the tas mel‘—:

The OpenMP fork-join model is not suitable for the tasking model
— Theparallel construct replicates the encapsulated code to all threads

The master and single constructs assigns the code within the parallel
region to a single thread

o —
——

Dlstr>|bt|ng p;r;ﬁalsm with

#pragma omp parallel \ |
#pragma omp parallel \ num threads (4)
num_threads (4) A'A A A #pragma omp master A
{
{
A; , 7 7 7 A;

}

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 51 (( Gy

!



#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

int main(int argc, charx argvl[])

{
#pragma omp parallel num_threads(4)
{

#pragma omp task

}

return 0;

printf("Thread ID %d\n", omp_get_thread_num());

* How many messages?

* In which order?

ACACES 2021, Fiuggi, Eduardo Quifiones

Barcelona
( ot Nomcworal o Sugmreimmpn et



Thread ID © Thread ID 3 Thread ID © ° HOW many messages?‘

lThread D 3 Thread ID © Thread ID 2

Thread ID 1 Thread 1D 2 Thread ID 1 . . 5

IThread Ip 2 gl s Lol In which order? UNDETERMINED

#pragma omp master
Thread ID ©
Thread ID 2

Thread ID 3

ACACES 2021, Fiuggi, Eduardo Quifiones

Minclude <stdio.h>
#include <stdlib.h>
#include <omp.h>

*-~\\\\\\\\\\\~ int main(int argc, charx argvl[])

{

“~\‘#pragma omp parallel num_threads(4)
{

#pragma omp task

}

return 0;

printf("Thread ID %d\n", omp_get_thread_num());

53

@

Barcelona

Supercomputing

Caentor

ot Nomcworal o Sugmreimmpn et



( ) e  Which units can run concurrently?
void saxpy(double *x, double *y)

{ * Where does task can be inserted?
#pragma omp parallel
#pragma omp single

=08; i < N: is=BS1) { Granularity of the parallel execution
;:,t.']jnt 2 1; "k“;,,;;"i’—f—,z T - Amount of execution done by each task
) yli+j+k] += a * x[1+j+k]; Degree of parallelism
] - How many tasks can be potentially
} executed simultaneously

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 54 (@ Supervemputing

Cartro Nmcworal B0 Sugercompnecnin



void saxpy(double *x, double *y)
{

#pragma omp parallel
#pragma omp single

for (int 1 = @; 1 < N; 1+=BS1) {
#pragma omp task
for(iint 1 =008 ] <WBS1:  JT-BS2 )T
for(int k = 0; k < BS2; ++k) {
y[i+j+k] += a * x[1+j+k];

void saxpy(double *x, double *y)
{

#pragma omp parallel
#pragma omp single

for (int 1 = @; 1 < N; 1+=BS1) {
for(int j = 0; j < BS1; j+=BS2) {
#pragma omp task
for(int k = 0; k < BS2; ++k) {
y[i+j+k] += a * x[1+]j+k];

voild saxpy(double *x, double *y)
{

#pragma omp parallel
#pragma omp single

for (int 1 = 0; 1 < N; 1+=BS1) {
for(int j = @; j < BS1; j+=BS2) {
for(int k = 0; k < BS2; ++k) {
#pragma omp task
y[i+j+k] += a * x[i+j+k];

von saxpy(double *x, double *y)

}/

ACACES 2021, Fiuggi, Eduardo Quifiones

{
#pragma omp parallel
#pragma omp single
for (Aot i = 0; i < N: i+=-BS1) {
for(int j = ©; j < BS1; j+=BS2) {
for( =0; k < 3
y[i+j+k] += a * x[i+j+k];
}
L} 7
}
}
}

(@

Supercomputing

Caentor

ot Nomcworal o Sugmreimmpn et




e Ty k an d ifa sfk

void saxpy(double *x, double *y) EOid saxpy(double *x, double *y)
{
#pragma omp parallel #pragma omp p?rallel
#pragma omp single #pragma omp single
for (int 1 = ©; 1 < N; 1+=BS1) { #pragma omp taskloop
#pragma omp task for (int 1 = 0; 1 < N; 1+=BS1) {
for(int j = ©; j < BS1; j+=BS2) { for(int j = 6; j < BS1; j+=BS2) {
for(int k = 0; k < BS2; ++k) { for(int k = 0; k < BS2; ++k) {
y[i+j+k] += a * x[1+j+k]; y[i+j+k] += a * x[1+j+k];
}
} }
} !
} }
} }

I |

Equivalent if single iterations are distributed across threads: grainsize (strict:1)

ACACES 2021, Fiuggi, Eduardo Quifiones 56 (@
M“Ow



S ncomzatlon and data sham 3

 Mechanisms to define the order and the type of access to data

— Prevents data races: two threads access the same object and at least one of
them is a write

* Synchronization imposes an order of execution of parallel units
* Data-sharings define the scope at which a change in a variable is visible

Memory fences Memory consistency Mutual exclusion

™ ( )

Thread-centric model: - private (clause) - atomic

- barrier - firstprivate (clause) - critical

- nowait (clause) - Lastprivate (clause)

Task-centric model: i shared (clause) )

- taskwait

- taskgroup

- d d (clause Speremputing
\ epend (clause) J >/ (( S




Mem ry E

#pragma omp parallel

barrier {
#pragma omp for
* All threads of the team for (i=1; i<n; i++)
. b[i] = (a[i] + a[i-1]) / 2.0;
must execute the barrier o
. for (i=0; i<m; i++)
and any pendlng work 11) = et (2111 : : | |
before proceeding }
nowait (clause) fpragma omp parallel
. . . . £ RN || 0000 et e
*  Avoid unnecessary implicit fpragna omp for nowait
synchronizations bli] = (ali] + ali-1]) / 2.0;

#pragma omp for nowait
for (i=0; i<m; i++)
y[i] = sqgrt(z[i]);

ACACES 2021, Fiuggi, Eduardo Quifiones 58 (( Suparcemputing



’_‘Tf-~ ~~ s —

taskwait #pragma omp task // T1 e

* The encountering task is { #pragma omp task // T2
suspended until all - @ 0
previous child tasks have #pragma omp task // T3
executed Foragna omp taskwait @

taskgroup #pragma omp taskgroup e

{

* Generates a new region fpragma ompltask // TL
where all inner tasks have #pragma omp task // T2 @ e
to finish before the } -
encountering thread can fﬁ‘;agma Sl @
proceed }

ACACES 2021, Fiuggi, Eduardo Quifiones 59 (( ""‘""‘""""’



Cem——— — —_— - —

emory Fences for the Task Mo

Cholesky Factorization

for (int k = 0; k < nt; k++) {
#pragma omp task depend (inout: Ah[k] [k])
potrf (Ah[k][k]);

depend (Clause) for (int 1 = k + 1; 1 < nt; %-H—) {
#pragma omp task depend (in: Ah[k][k]) \

depend (inout: Ah[k][i])

. Enforce orderin
8 trsm (Ah[k][k], Ah[k][i]);

constraints on the )
scheduling of tasks for (int i = k + 1; i < nt; i++) {
. for (int 3 = k + 1; j < i; J++)
¢ Defines data-flow #pragma omp task depend (in: Ah[k][i], Ah[k][j1) \
execution depend (inout: Ah[j][i])

gemm (Ah[k][i], Ah[k][J], Ah[J][i]);
#pragma omp task depend (in: Ah[k][i]) \

depend (inout: Ah[i][i])
syrk (Ah[k][i], Ah[i][i]); é Task Dependency

b} Graph (TDG)

ACACES 2021, Fiuggi, Eduardo Quifiones 60 (( ﬁé“‘-“wm



— gy e —.__..-_-
— 'l

Data-sHaring attributes

* Defines the visibility of variable across
H Main memory

parallel regions

. . . Temporary
— shared, private, firstprivate view
and lastprivate clauses
master task task int a = 1, res;
#pragma omp parallel shared(res) firstprivate(a)
thread 1 thread 2 thread 3 #pragma omp master
{
int x,vy;
#pragma omp task shared(x) firstprivate(a)
X = a*a;
: #pragma omp task shared(y) firstprivate(a)
_ g g y ata;
- {a—l(copy) a=l(copy) a=1(copy) #pragma omp taskwait
&res &x &y res = x+y;
.y } ,

A

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 61 ( "‘c.,’.‘..,"‘""""" ‘



#include <stdio.h>

#define N 20

long long fib (int n)

{
long long x, y;
if (n < 2) return n;
x = fib(n - 1);
y = fib(n - 2);
return X + y;

}

int main()

{
int res = fib(N);
printf("Fibonacci number %d is %d\n",
return 0;

}

N, res);

ACACES 2021, Fiuggi, Eduardo Quifiones

62

Which portions can be concurrent?

Which synchronizations are needed?

Which are the data-sharing attributes?

@@= __



svnchronizations

-
#include <stdio.h>
#define N 20

long long fib (int n)
{

long long x, y;
if (n < 2) return n;

#pragma omp task shared(x) firstprivate(n)
x = fib(n - 1); <

#tpragma omp task shared(y) firstprivate(n)
y = fib(n - 2); <

#pragma omp taskwait

return x + y;

}

int main()

{
int res = -1;
#pragma omp parallel shared(res)
#pragma omp single

res = fib(N);

}
printf("Fibonacci number %d is %d\n", N, res);
return 0;

}

\_

ACACES 2021, Fiuggi, Eduardo Quifiones

Data-sharings:
* xand y are shared variables
* nis not shared among tasks

} Concurrent functions

Synchronization
(x and y are shared variables!)

Il

63 (@ m_—



“datassharing + fil .fé " G

svnchrénizations

g double dot_product (long N, long CHUNK_SIZE, h
double A[N], double B[N])
{
long N_CHUNKS;
long actual_size;

int j;
double acc;

N_CHUNKS = N/CHUNK_SIZE;

N_CHUNKS = (N_CHUNKS*CHUNK_SIZE<N)?
N_CHUNKS+1 : N_CHUNKS;

double *C = malloc (N_CHUNKS*sizeof(double));

acc=0.0; . .
3=0; * Which portions can be concurrent?
for (long 1=0; i<N; i+=CHUNK_SIZE) {
actual_size = (N-CHUNK_SIZE>=CHUNK_SIZE)? e Which synchronizations are needed?
CHUNK_SIZE:(N-CHUNK_SIZE);
cr31-0; * Which are the data-sharing attributes?

for (long ii=0; ii<actual_size; ii++)
C[j1+= A[i+ii] * B[i+1i];

acc += C[j];

J++;

}

return(acc); mm
g } J 64 (@ mam




svnchronizations

double dot_product (long N, long CHUNK_SIZE, double A[N], double B[NI)
{

long N_CHUNKS;

long actual_size;
int j;
double acc; ¢

N_CHUNKS = N/CHUNK_SIZE;

N_CHUNKS = (N_CHUNKS*CHUNK_SIZE<N)? N_CHUNKS+1 : N_CHUNKS;
double %C = malloc (N_CHUNKSxsizeof(double));

acc=0.0;

j=0;

for (long i=@; i<N; i+=CHUNK_SIZE) {

actual_size = (N-CHUNK_SIZE>=CHUNK_SIZE)?CHUNK_SIZE: (N-CHUNK_SIZE);
#pragma omp task firstprivate(j, i, actual_size) depend(out:C[j])
{
clil=o0; C[0] |[C[1] C[N-1]
for (long ii=0; ii<actual_size; ii++)
Cl[jl+= Al[i+iil * B[i+iil;
¥

#pragma omp task shared(acc) firstprivate(j) depend(inout:acc) depend(in:C[j]) —8M8 —

acc += C[jl;
j++; H H
} Synchronization
#pragna omp taskwait (acc is a shared variable)
return(acc); (@““ e

I~



atomic

 Ensures a specific storage location is accessed #pragma omp parallel for \
. shared(x, y, index, n)
atomlca”y for (i=0; i<n; i++) {
o/ . #pragma omp atomic update
Only specific operations are allowed o imdom[1h o

* Decorators specify the type of access (e.g., update, | I = e

read, write,...)

Critical #pragma omp parallel shared(x, y) \
private (ix_next, iy next)
» Restricts execution of a structured block to a single { _— :
. #pragma omp critical (xaxis)
thread at a time ix next = dequeue (x);
work (ix next, x);
* Can be named #pragma omp critical (yaxis)
- - : i t =d (y);
*  Might perform worse than atomic but is more Rk m,
flexible )

ACACES 2021, Fiuggi, Eduardo Quifiones 66 (( ""‘""""""”



- parallel
Spawn parallelism - num_threads (clause)

- master/single

) - for
Thread-centric .
Distribute - section

arallelism . - task
P Task-centric =
- taskloop

- barrier

VIR - nowait (clause) Let’s develop CPS with

] :—::twgr f,i:E OpenMP and so cope with the

- depend (clause) the performance

- private requirements of the most

Data-sharing Memor - ;
Yy - firstprivate . .y '
consistency - lastprivate advanced CPS functionalities!

- shared

fence

Synchronize &

Mutual exclusion - atomic —
- critical (( Sopercenputins




* Page 1 of the OpenMP specification document says:
— Application developers are responsible for correctly using the

OpenMP API to produce a conforming program

10 i f the O MP API
verview of the Open CPS correctness

cannot rely on magic!

‘The collection of compiler directives, library routines, and environment variables that this
document describes collectively define the specification of the OpenMP Application Program
Interface (OpenMP API) for parallelism in C, C++ and Fortran programs.

‘This specification provides a model for parallel programming that s portable across architectures
from different vendors. Compilers from numerous vendors support the OpenMP APL More
information about the OpenMP API can be found at the following web site

http://www.openmp .org

The directives, library routines, environment variables, and tool support that this document defines
allow users to create, to manage, to debug and to analyze parallel programs while permitting
portability. The directives extend the C, C++ and Fortran base languages with single program
multiple data (SPMD) constructs, tasking constructs, device constructs, worksharing constructs,
and synchronization constructs, and they provide support for sharing, mapping and privatizing data.
The functionality to control the runtime environment is provided by library routines and
environment variables. Compilers that support the OpenMP API often include command line
options to enable or to disable interpretation of some or all OpenMP directives.

1.1 Scope

The OpenMP API covers only user-directed ization, wherein the explicitly
specifies the actions to be taken by the compiler and runtime system in order to execute the program
in parallel. OpenMP-compliant implementations are not required to check for data dependences,
datoconfic it deadlocks Comoliant P ecAguicadii
check for any code sequences that cause a program to be classified as non-conforming. Application
developers are responsible for correctly using the OpenMP API to produce a conforming program.

"I'm a software engineer, so I can confirm
ACACES 2021, Fiuggi, Eduardo Quifiones it works by magic.” (( Supercemputing

) N e Sge ey




e

— g i

implementing CPS with OpenMP|

 The complexity of parallel programming increases if guarantees on
functional and non-functional correctness must be provided

1. Functional correctness (safety) ensure a correct system operation
in response to its inputs guaranteeing system integrity
— Reliability: The property that ensures the system correctness

— Resiliency: The property that guarantees the system recovery if an
unexcepted event impacts on system correctness, e.g., a soft transient

error

2. Non functional correctness

— Time predictability: Reasoning about the timing behaviour of the parallel
execution to ensure the execution completes within a given deadline

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 69 (( —y —



—
e

- = ,‘—"l ' —
‘__——l ——— —

Concl sions

* OpenMP provides a great expressiveness to describe parallelism,
but...

.. puts all responsibility on functional correctness on the software
developer (not always the best option, even for HPC...)

.. does not provide any support to guarantee time predictability

Next lesson will analyse OpenMP from a functional
correctness and time predictability perspective to enable
its applicability on the development of CPS

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 70 (( —y —

%



Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

©

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-
Physical Computing Domains

Lesson 3: OpenMP and CPS

Eduardo Quinones
{eduardo.quinones@bsc.es}

ACACES 2021, Fiuggi




* Reliability and resiliency on parallel execution
(Accelerator)

* Task Dependency Graph (TDG)

* Time predictability

— OpenMP task scheduler FIW [ HW [ W “
— Schedulability analysis

* OpenMP Tracing
— Extrae and Paraver

 Model Driven Engineering
— Amalthea and OpenMP

* Conclusions

’ Peripherals ‘

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 72 (( —y —



- et~ - . — T

_i“‘-“-——-—' ———-—— —-——_

Rellablty ParaIIeI Execution and Corecness

1. Data races
— Occur when two threads access the same shared object and at least one
of them is a write
— Data races result in undefined behavior

2. Wrong data sharing definition

— Occur when the visibility of the variables is not properly setup, resulting in
an incorrect execution

3. Deadlocks

— Occur when the program is waiting for an event that cannot happen
* Two threads are waiting in the same critical region

— Deadlock blocks the execution of the program forever

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 73 (( —y —



ﬁ 20 - s ll Lt
int a=2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)

#pragma omp master
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a)

X = a;
#pragma omp task shared(y) firstprivate (b)
y = b;

<«—— jpragma omp taskwait
res = x+y;
}

printf (“res: %d\n”,res);

(base) Eduardos—-MacBook-Pro:test Eduardo$ ./test

int a=2, b=2, res=0;

#pragma omp parallel shared(res,a,b)
#pragma omp master

{

int x=0,y=0;

#pragma omp task shared(x) shared(a)
X = a;

#pragma omp task shared(y) shared(b)

res = x+y;

y = b;
#pragma omp taskwait J

Race

res: 4
(base) Eduardos—-MacBook-Pro:test Eduardo$ ./test
res: 2

C()I](iiti()l\! (base) Eduardos-MacBook-Pro:test Eduardo$ ./test

}

printf (“res: %d\n”,res);

ACACES 2021, Fiuggi, Eduardo Quifiones

74

res: 0

 Which is the value of res
printed?

(base) Eduardos—-MacBook-Pro:test Eduardo$ ./test
res:

4

Bavcelona
Supercomputing

Center

Cortro Nataoral 0 Sugrercompniscnin



int a = 2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master

{

int x=0,y=0;

#pragma omp task shared(x) firstprivate (a)
X = a;

#fpragma omp taskwait

#pragma omp task shared(y) firstprivate (b)
y = b;

#fpragma omp taskwait
res = x+ty;
}

printf (“res: %d\n”, res);

int a = 2, b=2, res=0;

#pragma omp parallel -firstprivate{res) firstprivate(a,b)

?pragma omp master shared (res)
int x=0,y=0;
#pragma omp task shared(x) firstprivate (a)
X = a;
#pragma omp task shared(y) firstprivate (b)
y = b;
#fpragma omp taskwait
res = x+ty;

}

printf (“res: %d\n”,res);

44’>(base) Eduardos-MacBook-Pro:test Eduardo$ ./test

res: 4

* Which is the value of res
printed?

Race condition!

ﬁ

(base) Eduardos—-MacBook-Pro:test Eduardo$ ./test

res: 0
(( Barcelona
Supercomputing
Center
Tt Nl O Sugmrcompn Awcin



“6‘*?;,-’!:-: { /’

Parallel Correcthess

int a = 2, b=2, res;
#pragma omp parallel shared(res) firstprivate(a,b) ‘
#pragma omp master
{
int x, vy, factor=0;
#pragma omp task shared(x,factor) firstprivate (a)
{
X = a;

} if (cond(x)) factor++; < » Is this code functionally correct?

#fpragma omp task shared(y) firstprivate(b)
y = b;

factor++; < Race condition!
#pragma omp taskwait

res = (xty)*factor;
}

printf (“res: %d\n”,res);

76 @=__



int a = 2, b=1l, res;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master

{
int x, vy, factor=0;
#pragma omp task shared(x,factor) firstprivate(a)
{
x = a*a;
if (cond(x))
#pragma omp critical (factor_ update)
factor++;

}
#pragma omp task shared(y) firstprivate (b)

y = b*b;

#pragma omp critical (factor_ update)
{

 What is wrong with this code?

factor++;
#pragma omp taskwait
res = (xty)*factor;

}
}

printf (“res: %d\n”,res);

77

Deadlock!

(@ Conro Mnsiore!
Supercomputing
Caentor

0 Sugercompndpcnin



int a = 2,

b=1, res;

#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master

{

}

printf (“res:

int x, vy, factor=0;
#pragma omp task shared(x,factor) firstprivate(a)
{
x = a*a;
if (cond(x))
#pragma omp critical (factor_ update)
factor++;

}
#pragma omp task shared(y) firstprivate (b)

y = b*b;

#pragma omp critical (factor_ update)
factor++;

#pragma omp taskwait
res = (xty)*factor;

%d\n”, res) ;

78

Parallel Correcthess

The usage of critical mutex is
not recommended!

If needed, better use atomic

(@

Supercomputing

Centor

Cawtro Nmcral B0 Sugercomgnecin



1 — — : | -
o ’-..——-—l ——-—— —-—————

as ependency Graph (TD

A representation of the parallel nature of a
given OpenMP region, extracted by means of #pragna omp master

#pragma omp parallel

compilation and runtime methods ! int x,yi
. . . #pragma omp task depend(out:x,y) shared(x,y) // Tl
* Includes all the information for functional and { £1(sx,&y); )
non_funcional Correctness #pragma omp task depend(in:x) firstprivate(x) // T2
{ £2(x); }
— Para"el units and Synchronization #pragma omp task depend(in:y) firstprivate(y) // T3
. £3 ;
dependencies , e
— Liveness analysis of variables and data-
sharings involved in the parallel execution task creation

* Independent from the targeted parallel
platform (but can include HW dependent
information)
— Execution characterisation of parallel units
(e.g., time, energy, memory behaviour) firstprivate (x)

live vars: x

! shared(x,y)
i livevars:x,y

firstprivate (y)
live vars: y

1Vargas, et.al. A Lightweight OpenMP Run-time for Embedded Systems, in ASP-DAC 2016;
Vargas, et.al., OpenMP and Timing Predictability: A Possible Union?, in DATE 2015



rask ependency Graph (TDG i

A representation of the parallel nature of a Fine-grain synchronization and data movement
given OpenMP region, extracted by means of | to accelerators

Compllatlon and runtime methods * Liveness analysis for race condition detection
* Includes all the information for functional and
non-funcional correctness Execution characterisation of tasks on a given
— Parallel units and synchronization HW (platform-dependent)
dependencies 4
— Liveness analysis of variables and data-
sharings involved in the parallel execution task creation
* Independent from the targeted parallel
platform (but can include HW dependent % shared(x,y)
information) - L livevars: x,y
— Execution characterisation of parallel units :
(e.g., time, energy, memory behaviour) firstprivate (x) @/x Y\@ firstprivate (y)
live vars: x live vars: y

1Vargas, et.al. A Lightweight OpenMP Run-time for Embedded Systems, in ASP-DAC 2016;
Vargas, et.al., OpenMP and Timing Predictability: A Possible Union?, in DATE 2015



T e B m———

TD ?&' Functional Coﬁectngs? i

shared (res)
firstprivate (a,b)

int a = 2, b=2, res=0; .
#pragma omp parallel shared(res) firstprivate(a,b) N\ ter )7 ,.'.‘tGSk creation
#pragma omp master

; shared (x) shared (y)
int x=0,y=0; firstprivate (a) firstprivate (b)
#pragma omp task shared(x) firstprivate(a) // TI livevars: x ,a live vars: y ,b
X = a;

#pragma omp task shared(y) firstprivate(b) // T2 live vars: x & live vars:y
y = b;
#pragma omp taskwait

res = x+y; // Bl
}
printf (“res: %d\n”,res); B1 | livevars: res,x,y

1Royuela, Duran, Liao, Quinlan, Auto-scoping for OpenMP tasks, in IWOMP 2012 live vars: res l

2Lin, Static nonconcurrency analysis of openmp programs, in IWOMP 2008

ACACES 2021, Fiuggi, Eduardo Quifiones 81 ((

) Ncra 0 Sugerormgn At



nal Correctn 35S

shared (res)
firstprivate(a,b)
int a = 2, b=2, res=0 .
#pragma omp parallel shared(res) firstprivate(a,b) N ter ) y task creation
N s ",
i{tpragma omp master shared (x) shared(y)
int x=0,y=0; firstprivate (a) firstprivate (b)
#pragma omp task shared(x) firstprivate(a) // TI livevars: x,a live vars: y ,b
X = a;
#pragma omp task shared(y) firstprivate(b) // T2 live vars: x live vars:y
- A 4
y = b;
#pragma—emp—taskwait B1 | livevars: res,x,y
res = x+y; // Bl
} live vars: res
printf (“res: %d\n”,res);

x and y are write/read without a predefined order

ACACES 2021, Fiuggi, Eduardo Quifiones 82 (@
M“Ow



nal C

orrectn SS

."»J

int a = 2, b=2, res=0;

#pragma omp parallel firstprivate(res) firstprivate(a,b)

#pragma omp master
{
int x=0,y=0;
#pragma omp task shared(x) firstprivate(a) // TI
x = a;
#pragma omp task shared(y) firstprivate(b) // T2
y = b;
#pragma omp taskwait
res = x+y; // Bl
}

printf (“res: %d\n”,res);

The liveness analysis and the data-
sharing of res does not match!

ACACES 2021, Fiuggi, Eduardo Quifiones

83

shared (x)
firstprivate (a)

live vars: x,a

firstprivate (res)
firstprivate(a,b)

shared(y)
firstprivate (b)

live vars: y ,b

live vars: x 8 live vars:y

live vars: res ,x,y

B1

live vars: res l

(@

Supercomputing

Centor

Cawtro Nmcral B0 Sugercomgnecin



live vars: a[0]

{ firstprivate (i)

Livevars: a[1l]

shared (a,b)
firstprivate (i)
livevars: a[l],b[1]

live vars: b[1]

live vars: a,b

ACACES 2021, Fiuggi, Eduardo Quifiones

* How does the TDG look like?

jLNevam:a[O],i=0; a[l],i=1

#define N 2

int a[N], b[N];
#pragma omp parallel shared(a,b)
#pragma omp master
{
for (int 1i=0; i<N; i++) {
// T1

#pragma omp task shared(a) firstprivate(i) \
depend (out:a[i])

ali] = init(i);
if (! (1i%2))
// T2

#pragma omp task shared(a,b) firstprivate(i) \

depend(in:a[i], out:b[i])

b[i] = compute(al[i]);

}
#pragma omp taskwait

{

84

()
%‘!*



"—_'1:" =

———._-_-

Pedestrian detector Infra-red sensor pre- 3D Path Planning Cholesky Factorization
(automotive) processing (space) (avionics) (HPC)

. Ly 0 0 Ly Ln Ly
A=LLT=|L, Ln 0 0 Ly Lgp
Ly L3y Ly 0 0 Ly

L‘{L <% \H 3 32 33 31

- mil{l{i " L (symmetric)

k\'/ { le 4 = | Laln L3, + L3, i
‘J/l ll e / Ly Ly Ly Loy + LypLyy L3 + L3, + L2,

ACACES 2021, Fiuggi, Eduardo Quifiones 85 ((



Pedestrian detector Infra-red sensor pre- 3D Path Planning Cholesky Factorization
(automotive) processing (space) (avionics) (HPC)

- “
- -
- - -~ -t -~ - -
S -t |
s
KK \J
= -
£ -
L L L T L L L S L T
R e L e
S T S S L S T ST ST LT
B —
IS TSI IS SIS - ATy Yt O O e e
s T S D D T 5
®
-~ >t L - -
L > <
&2 2 o @
®
e

ACACES 2021, Fiuggi, Eduardo Quifiones . 86 ((



_i—“-"-——-—'

Rﬂhéncy

The OpenMP specification does not

include error handling mechanisms to

safely recover from errors

— Relies on those provided by the base

programming Ianguage, e.g.,
exceptions in case of C++

OpenMP includes directives (cancel

and cancellation point)to

cancel the parallel execution of

parallel, sections, for and
taskgroup

ACACES 2021, Fiuggi, Eduardo Quifiones 87

std::exception *ex = NULL;
#pragma omp parallel shared (ex)
{
#pragma omp for
for (int i=0;1i<N;i++) {
try {
iteration();
}
catch (std::exception *e) {
#fpragma omp atomic write
ex = e;
#pragma omp cancel for

}
}
if (ex)
#pragma omp cancel parallel

}
if (ex)
handle exception();



|me redl

* The timing behaviour of parallel execution depends on
the allocation of parallel units to computing resources
1. The parallel structure of the application
 The Task Dependency Graph (TDG)

2. The scheduler(s) responsible of allocating parallel units
(OpenMP tasks) to computing resources (cores/acceleration
devices)

*  The execution profile of the parallel units into the computing
resources

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 88 ( —y —

:



e " ‘———Lv -

B o . o
= - —

Time ictabilit

= R
————

1% Task Scher

* The OpenMP framework
includes multiple levels of
scheduling that dificults the
time predictability

ACACES 2021, Fiuggi, Eduardo Quifiones

( @) pen MP Task Ready tasks queue
(#Pragma omp task)

Team of OpenMP Threads ggég

(#pragma omp parallel num;threads)

et ssss88

HW Threads/HW Cores [

-------- » scheduling decisions



P "—'l - bt

|me redlctab Task ScheF

 The OpenMP Thread Affinity

OpenMP Task Ready tasks queue

allows fixing the OpenMP Wi Grp (5(d)
threads of a team to the = e 5 >
available HW threads on a Team of OpenMP Threads (<)
device (places) (#pragma omp parallel num threads) é % %J

— OMP PLACES h ’

— OMP_PROC BIND 0S Threads

* The parallel execution is only (ool of threads)

to OpenMP thread scheduler HW Threads/HW Cores
increasing time predictability

managed by the OpenMP task [_J' \‘_]

-------- » scheduling decisions

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 90 (( Ww



e Given two tasks with different priorities, there exist

three preemption strategies

HP T, HP tli HP T, ii
L"‘Zh_- . { o e o mm

Fully preemptive scheduling Non-preemptive scheduling Limited preemption
(cooperative) scheduling

Enabling HPC since 1997

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 91 C —y —



_i—“-"-——-—' I — ——

Th’O]oeanIPEEheduler

 The OpenMP tasking execution model defines a limited preemption
scheduling strategy

— OpenMP task-based program can only be preempted at predefined points of

the execution (a.k.a. preemption points or task scheduling points)
* Task creation and completion, taskwait, taskgroup

* Tasks cannot be preempted at any other point and must execute until completion

— Tasks includes a priority clause that can be used by the scheduler

 The actual implementation of the scheduler included in the runtime
is implementation-defined

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 92 C Comter



Th‘ﬁﬂoenl\/lP Task Scheduler l

#pragma omp parallel num_threads (1) TDG (order of creation):

#pragma omp master

{
for (int i=0;i<2;i++) { @ @ @ @ @ @
#pragma omp task priority(3) // t; - priority

{ ..}
#pragma omp task priority(2) // ¢,
{ ..}

#pragma omp task priority(l) // &; | + priority (a possible) order of execution:
{a)

} core0 | t3 | t5 | € | €2 | &1 | ts

ACACES 2021, Fiuggi, Eduardo Quifiones 93 ((



Time redlctabllﬁy TDG +—S;awedle

* The execution time of an OpenMP-
TDG is determined by:

1. The execution of OpenMP tasks
within the critical path

2. Interferences of the rest of OpenMP
tasks on the critical path

3. Interferences on HW/SW resources

due to the simultaneous execution of
OpenMP tasks

* Not addressed in this course! ,
interference

tasks

ACACES 2021, Fiuggi, Eduardo Quifiones 94

critical path

Barcelona
Supercomputing
Center ‘



——

Time redlctabllﬁy TDG:_Saedle

Shortest possible execution time
(critical path)

core0 t, t; ts

corel t, t, t,

Execution time increment
due to intereference

Interefence G
core 0 t, t; ts
core 1 t,

critical path

interference

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 95 tasks (( S



* Determines a response time upper bound (R"?) of an
OpenMP-TDG under a work-conserving scheduler*
— An OpenMP application is schedulable if RU? < Deadline (D)

Critical path

R*? £ len(G) vol(G) — len(G)) < D

Divided among
processing units (cores)

Interferences of the
remaining work

G: TDG annotated with execution
times of tasks

len(G): critical path

vol(G): sequential execution time
D: deadline

1A. Melani, et.al., A static scheduling approach to enable safety-critical OpenMP applications, In ASP-DAC 2017



RU G Realage*ﬁﬂl\/lP appllcatlr

* Executed using 16-cores only of the Intel® Xeon Platinum e RUD
1. Improved performance parallel vs. sequential s cequentiel
y) A b d tion tim ==  Average
. Average vs. max. observed execution times g
3. Maximum observed time over R*5
800 1000 500
o0 | Pre-processing sampling | 800 | 400

Pedestrian detector

Cholesky factorization

600 [

400

Time (msec)

iy | 200 |

gy Y
C Ry Y Y o
0 - !

22 57 193
# OpenMP tasks (TDG nodes)

S

aa
Ax gy
S v e 0 e e ¢ e S

0 L L L 1 L O
729 27 43 87 147 339 513 1299 3603 8043 23

123 819 2603 5987
# OpenMP tasks (TDG nodes)

# OpenMP tasks (TDG nodes)
ACACES 2021, Fiuggi, Eduardo Quifiones 97 ((



- *,gl
,

Uﬁéﬁndmg Parallel ExecuT

* s schedulability analysis sufficient to understand parallel execution? NO!

No information about the parallel execution efficiency from a programming perspective
— No information about the usage of computing resources

1000
800 -
S 600 F
£ Functions included within the
g 400 task construct
S
200
0 I L 1 1 L 1 1
27 43 87 147 339513 1299 3603 8043
# OpenMP tasks (TDG nodes)
. ) - Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 98 ( —y —




———— I _:._

i .
Unertandmg ParaIIeI Executlo

ecutiol T—

Based on how data is collected

Based on how data is stored

* Instrumentation:

- Captures information based on events
(TDG events!)

- Requires modification of the application
manual or automatic

- Reports exact data

* Tracing:
- Stores information in a timeline basis
- Holds exact data

- A profile can be derived from the trace

* Sampling:
- Captures information periodically

- Does not require modifying the
application

- Reports relative data

* Profiling:
- Stores information in counters
- Holds summarized data

- Atrace cannot be derived from a profile

ACACES 2021, Fiuggi, Eduardo Quifiones

99 (( .




— = ———

A“Multipectal Imagﬁg of the Parallel Ex» cutin §

Reality

Tools for
observing the

reality

Different representations of the
same reality containing different

information _—
ACACES 2021, Fiuggi, Eduardo Quifiones 100 (( Comtar




ACACES 2021, Fiuggi, Eduardo Quifiones

HW |[HW |[FW
func || func || func

eeeeeeeeeee

Reality QpenMP +
Tools for
observing the
reality

| Extrae \

Sequence of time-
stamped events (trace)

. - - -

Different representations of the
same reality containing different

information
101




] -

= ———

Unertandmg Ome':_E traeﬂ"ﬁr‘—‘_,:

* A dynamic instrumentation package to trace parallel programs

* (Capable of automatically capturing the activity of the parallel runtimes

— No need to access the source code, recompiling, relinking, or having prior
knowledge of application internals structure

* Allows reasoning about the execution behaviour of the parallel
programing model

— OpenMP support (other supported programming models are MPI, pthread,
etc.)

1 Extrae means Extract in spanish. Available here: https://tools.bsc.es/extrae

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 102 (( —y —



for (int i=0; i<3; i++)

A

User functions:

D :hog.civl_bsc_hog;4308;11;;
. :hog.c;vl_bsc_hog;4326;11;;
|:| :hog.civl_bsc_hog;4345;11;;

. :hog.civl_bsc_hog;4364;11;;

!

Functions
included within
the task
construct

parallel ; : .

8 us 512,325 us

THREAD 1.1.1

task
creation

THREAD 1.1.1
THREAD 1.1.2

task THREAD 1.1.3

THREAD 1.1.4

execution e iis

THREAD 1.1.6

THREAD 1.1.7

thread id T e

8 us 512,325 us

-
X |
i
! .
.:.ll
[
-

“
[ lI
' d B
v
‘II
L

[ |

|
.
ol |

8 us 512,325 us

! paraver means for seeing in spanish. Available here: https://tools.bsc.es/paraver

103

Barcelona

Supercomputing

Center

i) Mo e S g A i



Paraver

THREAD 1.1.1 m ﬁ- - - || i- [ -
THREAD 1.1.2 i) ™ im o AW
. . THREAD 1.1.3 i‘_-: . -- i- i_ -_- 1 [ - -.- =
Parallel functions view Task oo L DL R
llel ing level execution ... W o gy - R
(Para el programming eve) - i - ¥ r
THREAD 1.1.8 -- - i - i‘ i- i
r THRERD 1.1.1 . EE N EE NI W I
IPC THREAD 1.1.2 | - n | || | | | | | /NN B
THREAD 1.1.3 | H . | I | | [ | || 1 | . | | || Ran e_
(nstructions ™21 | ==, == Lum. o
per Cycle) ™' Im mm N | o o - I m = 0.1to0 2.0
THREAD 1.1.7 L | BN | | | | ma
Hardware counters oo s | wm mm m
. . . 9 us fe.12 512,325 us
information view m
(Computing resources THREAD 1.1.1 . — N O E . [
| | THREAD 1.1.2 | N | B | EEEEE RO
. THREAD 1.1.3 | m o N | mm I | m = . .
usage eve ) L1 miss e 11 | - - = (| [ I [ ] Range'
ratio reesisl i m  wm o e =Y 1%to15%
L THREAD 1.1.7 s . | . [ | | ] |
THREAD 1.1.8 HEE = . | I . | . |

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 104 (( —y —



Supportl Y multlple CPS funct|onaI|t|es in E eI\/IP

e CPS are composed of multiple functionalities (a.k.a. real-time tasks) T,
(TDG Gy,), each characterized by a period (T), a deadline (D) and a priority

O n D@ | AD W

@, N gl csgo —
o T e, rm
@ @ Y Limited preemption

@ Ty (cooperative) scheduling

* The limited preemption strategy and the priority clause supported by
OpenMP allows to analyse CPS with multiple functionalities implemented
with OpenMP

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 105 ( Comter



Supportlg multlple OpenI\/IP functlonallt E |CPS

T Period

Lower priority task Higher priority task
¢ > - . cheau lng
: 1 Points

i 1‘ | N1 1‘ + priority
T 72 I I L 1‘
)

. B

© = @@ D A,

ooty =
k @ *2' ) Task under analysis

ACACES 2021, Fiuggi, Eduardo Quifiones 106 (( x"""“':":'" .

- priority

:



4—"

Supportl g multlple O—penI\/IP functlonaht E |CPS

T Period
ior . . #pra Ol arallel
Lower priority task Higher priority task #iraﬁ og zingle nowait
interference interference Task . (
— H schedu“ng while (1) {
i : 3 Points if (get current clock t() == period 1)
1‘ T1 1‘ #pragma omp task priority (1)
‘ \ 1 { T1s
T T I I T 1‘ : #pragma omp taskwait
1‘ T I IT 1\ if (get current clock t() == period 2)
3 3 #pragma omp task priority(2)
{ T2;
#pragma omp taskwait
A6) T @ @ KD A )
@ @ @ if (get current clock t() == period 3)
> @ @ - #pragma omp task priority (3)
: @ @ T3 { 737
@ @ @ #pragma omp taskwait
¥ }
@ 7 )

}
ACACES 2021, Fiuggi, Eduardo Quifiones 107 \\

) N e g e A e



— _:7:»"':’,~ —

Schedulab

Critical path

Intra-task interference
(seIf—interferences)

RYD —{— —(vol(Gz) — len% ?< D,

D@

Higher priority tasks
interference

@ T1
& o

Lower priority tasks
interference

:\@' 1:3

#pragma omp parallel
#pragma omp single nowait
{
while (1) {
if (get_current clock t() == period 1)
#pragma omp task priority (1)

{ T1s

#pragma omp taskwait

if (get_current clock t() == period 2)
#pragma omp task priority(2)
{ T2;
#pragma omp taskwait
A\, }

if (get_current clock t() == period 3)
#pragma omp task priority(3)
{ T3;
#pragma omp taskwait
}
}
}

1 M. A. Serrano, et.al., An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-based Global Fixed Priority Scheduling,

In ISORC 2017



Functionalit T; #nodes P Ty (ms Dy, (ms
(24-core Intel Xeon) Y i k(ms) Dy (ms)
Pre-processing sampling T1 193 1 410 410
—==:D,
‘ R Person detector 75 1299 2 780 780
Meo.Observed Cholesky factorization T3 819 3 400 400
| = = Average
10000 400000
Pedestrian detector {80060
3000 (medium priority)
T 300} . . o ™
2 - Pre-processing sampling g o~ § 10000
S 200N (highest priority) FAR i mener pmon peeney - %
:
3 ~ = ~ 300
100 + e~ | .
- 100 e B e - 100
70t e e ] 50 ~ J s
4 8 12 16 20 24 4 8 12 16 20 24

Number of cores

Number of cores

Cholesky factorization
(lowest priority)

—-—
e e -

12 16 20 24
Number of cores



——-——-

d OpenI\/IP

Cyber-Physical System (CPS)
e O \ | * SO, can we now
develop the most

C{E ; advanced CPS
O enMP functionalities with

E abling HPC since 1997 OpenMP?---
.. Not Really

. )
g
Time (msec)

"I'm a software engineer, so I can confirm
it works By-magie.” from a functional and timing perspective”

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 110 (( —y —



e "'*—'——-—_I'L_.—_'* P
- e

I\/Ioﬁ:é DrlveFEn_:g-meerl;g_é-ﬁ“d E F'Vi

Logic
MDE Controller
(e.g. CAPELLA,
AMALTHEA,
AUTOSAR)

Bridge
the gap

Parallel == Parallel Units ==,

Programming

Models 4 —g-ee Parallel Units |=+--—
(e.g. OpenMP, kY A
Parallel OpencL, .____w";
Execution CUDA, COMPSs)
Model

Run-time
parallel
frameworks

ACACES 2021, Fiuggi, Eduardo Quifiones

Construction of complex systems

Formal verification of functional and non-functional
requirements with composability features

Correct-by-construction paradigm by means of
code generation

1. Compiler and run-time parallel frameworks that
\/ guarantee system correctness and exploit the
performance capabilities of parallel architectures

2. Synthesis methods for an efficient generation of
parallel source code, while keeping non-functional
and composability guarantees

111 (( e ot



] <Y — -

— i __,_‘_l—"‘: == 2 —

 —
— ———

AMALTHEA/AUTOSA RB??TCS'EIFW"’

* Automotive MDE highly inspired in

B units of work

AUTOSAR developed by Bosch O ordering
— Defacto standard for the development
of automotive SW —_— i
— Used by most of OEM and TIER1 and OpenMP o
TIER2 automotive companies . a5
) ) Process/Task Activity § s
* Multiple abstraction layers to Graph 2 &

define CPS SW components
—  AMALTHEA task Runnable | [1-%]

Runnable

— Runnable Group
— Stimulus ‘[2--*] Inside a runnable:
* Com patibility between the Transparent to AMALTHEA
AMALTHEA and OpenMP execution — —
models [ ] OpenMP

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 112 (( —y —



AMALTHEA DSML

e

i=[0:count-1] G read image

v & convert_image

» @ "host parallelism" -> (Boolean) true ]

v+ Activity Graph
Z read Image

» == Ticks
& write Image

~ @ analysisA
» w "accelerator parallelism” -> (Boolean) true ]
v+ Activity Graph
£ read Image
» 22 Ticks

& write ResultsA

~ & analysisB

—

» @ "accelerator parallelism" -> (Boolean) true ]
« Activity Graph
£ read Image
» 22, Ticks
& write ResultsB
» @ merge_results

ACACES 2021, Fiuggi, Eduardo Quinwmes 113

S

R'and OpenNT

Source-code transformation

S

#pragma omp parallel
#pragma omp single 3
#pragma omp task priority (x)
{
O #pragma omp task depend(out: Ima
run read image ("")
‘ #pragma omp task depend (inout:Image)
run convert image ("")
#pragma omp target depend (in:Image) \
depend (out:ResultsA)
run_analysisA ("");
#pragma omp target depend(in:Image) \
depend (out:ResultsB)
run_analysisB ("");

o O

un _merge results ("")
#pragma omp taskwait

P |

THREAD 1.1.2

#pragma omp task depend(in:ResultsA,ResultsB)

201,222 us



- ——"l_—_f

EneRgy-Efficient computation supporting multi-criteria optimisation|

N AMPERE™"
AMAITHEA and OpenMiP  ieiit=ni

Elaborate Sensors raw data Tracking and Fusion
Sensors Module Module

ODAS PRk g SO0 e (| pmmmmm e o S

Bounding Tracked Potential
Boxes Objects Obstacles

l kalman Filter n
l Kalman Filter H

Kalman Filter

Spatial
|| Synchronization

| Camera Pipeline :

:“‘"“.“T“‘ Sensor
Fusion

1
|
1
CCM : Camera
1
I
I

| sewn | speedur [NV

WATERS 2-cores 1.88 TX2 boa rd

H____L_iDA_R____M || Lane detection || H SFM ‘l ODAS 4-cores 2.62 with a GPU’ a

Cloud1 Positions Lane boundaries Depth Estimation 4'CO re A R M
[ tocaizaton |+ ke [+ Plamer | WATERS  4-cores + GPU 6.21 CPU
Bounding

|| Detection HBOL

ACACES 2021, Fiuggi, Eduardo Quifiones 114 ((

o  Sogmr e A



—

— ‘— — .' !— _———

onclsions

 The TDG (extracted by means of compiler and/or runtime
methods) includes all the information needed to
— Reason about the timing behaviour of OpenMP programs and so
derive timing guarantees

* The use of tracing tools (e.g., Extrae and Paraver) are needed to incorporate
the required information and further understand the execution behaviour

* The OpenMP execution model implements a limited preemption scheduling
strategy upon which schedulability analysis can be built

— Implement compiler mechanisms to guarantee functional correctness
by detecting (and correcting) race conditions

* OpenMP is compatible with the AMALTHEA DSML, facilitating
its usage in the automotive domain

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 115 (( —y —



——

Challdnges we are addressingl..

1. Better characterisation of the parallel execution
— Contention on shared resources due to parallel execution
— Overhead introduced by the run-time mechanism
— Compiler and run-time mechanism to ensure no data-races and deadlocks

2. Modification of the OpenMP standard to better capture
functional/non-functional requirements

— Error handling mechanisms to safely recover the parallel execution from
errors
— Event-driven execution missing

3. Interoperability with different MDE

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 116 C Comter



’ - o A
S : — -
s ‘———Lv — et~ - . N‘*..

-;._.

it eraure of OpenI\/IP on CPST »

* openmp.org
Analysis of the overall OpenMP specification
1. M. Serrano, S. Royuela and E. Quifiones. Towards an OpenMP Specification for Critical Real-time Systems. In IWOMP 2018
2. R. Vargas, E. Quinones and A. Marongiu, OpenMP and Timing Predictability: A Possible Union?, In DATE 2015
Schedulability analysis for homogeneous computing
3. M. A. Serrano, A. Melani, S. Kehr, M. Bertogna, E. Quifiones, An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-based
Global Fixed Priority Scheduling, In ISORC 2017
4. A. Melani, M. A. Serrano, M. Bertogna, I. Cerutti, E. Quifiones, G. Buttazzo, A static scheduling approach to enable safety-critical OpenMP
applications, In ASP-DAC 2017
5. M. A. Serrano, Alessandra Melani, Marko Bertogna and Eduardo Quifiones, Response-Time Analysis of DAG Tasks under Fixed Priority Scheduling
with Limited Preemptions, In DATE, Dresden (Germany), March 2016
6. Roberto E. Vargas, Sara Royuela, Maria A. Serrano, Xavier Martorell, Eduardo Quifiones, A Lightweight OpenMP4 Run-time for Embedded
Systems, In ASP-DAC 2016
7. Maria A. Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu, Marko Bertogna and Eduardo Quifiones, Timing Characterization of

OpenMP4 Tasking Model, In CASES 2015
Schedulability analysis for heterogeneous computing

8. M. A. Serrano and E. Quifiones, Response-Time Analysis of DAG Tasks Supporting Heterogeneous Computing, in DAC 2018
Functional safety

9. S. Royuela, L.M. Pinho and E. Quinones, Converging Safety and High-performance Domains: Integrating OpenMP into Ada, In DATE 2018

10. S. Royuela, A. Duran, M. A. Serrano, E. Quifiones, A functional safety OpenMP for critical real-time embedded systems, In IWOMP 2017

11. S. Royuela, X. Martorell, E. Quinones, and L. M. Pinho, OpenMP Tasking Model for Ada: Safety and Correctness, In Ada-Europe 2017

ACACES 2021, Fiuggi, Eduardo Quifiones 117 ((

) N e e Sog e crmpe Ae o



Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

©

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-
Physical Computing Domains

Lesson 4: Distribution across the
compute continuum: COMPSs

Eduardo Quinones
{eduardo.quinones@bsc.es}

ACACES 2021, Fiuggi




COMPSs framework

— Execution model and memory model
— Task model

Reliability and resiliency
* Time predictability
— Static allocation heuristics

Connected Car

41101000 011,
V101100 0117

{01100 O,

e Areal CPS: a smart mobility use- aow
case |_%—> Detection » Tracking Object R

° ConCIUSionS |_%—> Detection —> Tracking } IS S

ACACES 2021, Fiuggi, Eduardo Quifiones 119 (( .:'c.,:,""":u"".:":"'wﬂ



Programming distribute framework highly inspired in the OpenMP tasking
model

Supports Python, Java and C++

— For Python and C++, the code is annotated to describe asynchronous procedures
(task) and the data dependencies among them

— For Java, the model does not require to use any special API call, pragma or
construct in the application

Agnostic of the underlying distributed computing infrastructure

— Programs do not include any infrastructure details, making applications portable
The memory and file system space is abstracted, giving the illusion of a
single memory space and file system

— The runtime takes care of all the necessary data transfers.

1 http://compss.bsc.es 120 (( S—



g S —

xecJ—ﬁ—el MaSter'Wo]E“"'-

<ResourcelList>
< Name="192.168.12.1">
<Processor Name="MainProcessor">
<ComputingUnits>6</ComputingUnits>

e The COMPSs runtime is composed of

Master, responsible of the execution of
the main program and the distribution of
the asynchronous tasks, honoring task
data dependencies

— Worker, responsible of the execution of
the COMPSs tasks on the different
computing resources as described in the
resource.xml file, and the data transfer
among workers

ACACES 2021, Fiuggi, Eduardo Quifiones 121

resources.xml

</Processor>
<Adaptors>
<Ports>
<MinPort>43002</MinPort>
<MaxPort>43003</MaxPort>
L</ComputeNode>

L

XNui
anlleN

< >
<CloudProvider Name="rotterdam">

<Images>
<lmage Name="bscppc/tracking_partial:rotter

L</C|0ud>

(< Name="docker-worker-4">
<Processor Name="MainProcessor">
<ComputingUnits>6</ComputingUnits>
</Processor>
<Properties>
<Property>
<Name>Engine</Name>
<Value>docker</Value>
</Property>
<Property>
<Name>ImageName</Name>

</Property>

\</ComputeNode>

<Value>bscppc/tracking_partial</Value>

Neraiicn

</ResourcelList>



Task Mbdel

 The master maintains the memory consistency and distributes the

asynchronous tasks across the workers

@task (x=0UT)
def f1(1i):

return X

@task (x=IN)
def f2(x):

def main() :
x=f1 (1)
£2 (x)

Workers
Master (resource.xml) —
) : .- p
::> Resource 2 '
© =
e ‘ 4. Data SURR S,
Transfer X
1. Data renaming of 3.Task = s,
WaR and WaW Scheduling " 2 ot
2. TDG generation N Bl @ c

.
-------------------------------------------------------------------------------------------------------------------------

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 122 (( —y —



Task Mbdel

@task (x=0UT)

e The COMPSs tasking model is similar to def £1(1):
the OpenMP tasking model... return 472
@task (x=IN)
— Oblivious of the underlying distributed physical def £2(x):
Iayout return x+2
def main () :
— Strucliured and unstructured data- and task- for i in [1..2]
parallelism x=f1 (1)
. =f2 (x)
decorator)
— Coarse- and fine-grain synchronization: worker 4 2 s 2 |
compss _wait on (COMPSs runtime call)
and IN and OUT data dependencies (python worker 4 £1 4 f1 N
decorator) compss_wait _on compss_wait_on
- i master | 77777008 W00 |,
ACACES 2021, Fiuggi, Eduardo Quifiones 123 ~

main main main



Task Mbdel

... but not the same!

— Synchronization directives implies data
transfer between workers and master and

workers

* Input/output data is serialized/deserialized and

stored in disk

— There are not shared variables
— COMPSs tasks are “stateless”

» State across multiple executions of the same task
must be included as an INOUT dependency

ACACES 2021, Fiuggi, Eduardo Quifiones

124

@task (x=0UT)
def f1(i):
return 1i*2
@task (x=IN)
def f2(x):
return x+2

def main{() :
for 1 in [
x=f1 (

1
i)
y=£2 (%)

.. 2]

compss_wait_on(y)

worker 4 2 s £2 |
x=2| y=4 x=4 =6
worker 4 £f1 A fl _
i=1 i=2 ;
compss_wait on compss_wait on
master [ 8 V0,

main main

»

main



@task (i=IN, x=0UT)
def f1(1i):
X=1%*2
return x
@task (i=IN)
def f2(1):
y=1i+2
return y
@task (y=IN)
def f3(x,vy):
print (x+y)
def main() :
x=f1 (1)
y=£2 (x)
compss_wait on(y)
£3(x,Y)

@task (i=IN, x=0UT)
def f1(1i):

X=1%*2

return x
@task (i=IN,y=0UT)
def £2(1):

y=1i+2

return y
@task (y=IN,x=IN)
def f3(x,vy):

print (x+y)
def main () :

x=f1 (1)

y=£2 (x)

£3(x,y)

ACACES 2021, Fiuggi, Eduardo Quifiones

125

Are these two source-codes
equivalent from a functional

and parallel perpective?
YES and NO

(@

Supercomputing

Centor

Cawtro Nmcral B0 Sugercomgnecin



@task (i=IN,x=0UT)
def f1(i):
X=1%*2
return x
@task (i=IN)
def f2(i):
y=1i+2
return y
@task (y=IN)
def f3(x,vy):
print (x+y)
def main () :
x=f1 (1)
y=£2 (x)
compss_wait_on(y)
£3(x,y)

master

ACACES 2021, Fiuggi, Eduardo Quifiones

workers

126

@task (i=IN,x=0UT)
def f1(i):

X=1%*2

return x
@task (i=IN,y=O0UT)
def f2(i):

y=i+2

return y
@task (y=IN,x=IN)
def f3(x,vy):

print (x+y)
def main() :

x=f1 (1)

y=£2 (x)

£3(x,y)

master

workers




i — E-— : |

S

Impigmlng CPS with CO_I\—/I_I;S— l am

 The complexity of parallel programming increases if guarantees on
functional and non-functional correctness must be provided

1. Functional correctness (safety) ensure a correct system operation
in response to its inputs guaranteeing system integrity
— Reliability: The property that ensures the system correctness

— Resiliency: The property that guarantees the system recovery if an
unexcepted event impacts on system correctness, e.g., a soft transient

error

2. Non functional correctness

— Time predictability: Reasoning about the timing behaviour of the parallel
execution to ensure the execution completes within a given deadline

Copy-paste from
the OpenMP Lesson!

ACACES 2021, Fiuggi, Eduardo Quifiones 127




1. Data races

— Occur when two workers access to the same memory object or file and at least one
of them is a write

— A memory object or file written by one worker cannot be read by another worker if
no synchronization is done

— Data races result in undefined behavior

2. Deadlocks
— COMPSs does not include mutual exclusion

3. Error handling mechanisms

— COMPSs does not include them to safely recover the parallel execution from errors

* Relies on those provided by the base programming language, i.e., exceptions in case of Python
or C++

Barcelona
ACACES 2021, Fiuggi, Eduardo Quifiones 128 (( —y —



Data Races and TDG

@task (i=IN,x=0UT) master workers
def f1(i): JUTTUTEUTTTLECIETTEEN SRRCCIITITETTITN :
x=1%*2 '
return x /.1 =1 I
@task (i=IN) T d
def £2 (1) : Py @ i The COMPSs framework raises an
y=1 H 1 H E E . .
return y PPTInt Wi e exception when accessing y value!
of mamtre | e G
x=£1 (1) 2 : e
y=£2 (x) )
cewmpes—rait—onlr y=3
print (y) “rrrnrenn :

ACACES 2021, Fiuggi, Eduardo Quifiones 129 ((



|me redl

* The timing behaviour of parallel execution depends on
the allocation of parallel units to computing resources

1. The parallel structure of the application
* The Task Dependency Graph (TDG)

2. The scheduler responsible of allocating COMPSs tasks to

workers
* The execution profile of the parallel units into the computing
resources

* The cost of serialization/deserialization and data transfers among
computing resources

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 130 ( —y —



e e = e

— e

lime predictability

* Achivied by means of static allocation of COMPSs tasks to
workers due to the complexity and heterogenity of the
compute continuum infrastructure (including edge and cloud
resources)

— Schedulability analysis would result too pessimistic due to
communication costs

* Allocation heuristics tries to minimize the computation/
communication costs

— Based on the parallel nature of the TDG and the execution time
characterisation of tasks and data transfers across the compute
— Extrae and Paraver supported

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 131 (( W,



e Heuristics based on successors
— Largest Number of Successors (LNS) ®ri|[]

* Order of allocation of ready tasks: R2

U
3(R2) ,4(R3) ,2(R1) Sl

* Heuristics based on processing time

— Shortest Processing Time (SPT) R1
« Order of allocation of ready tasks: R2|[]
2(R2) ,4(R3),3(R1) R3]
ACACES 2021, Fiuggi, Eduardo Quifiones 132

Task Profile (including communication and
computation) on Resources R1, R2 and R3

OO,

r2 | [] []
o O O




|_~—’| Detection |—>| Tracking

Object L)
aggreg

Hazard
detection

F%—'| Detection H Tracking

## Main function ##
while True:
for i, camid in cameras:
obj list = get detected objects (camid)
track obj[i] = (obj 1list, track obj[il])

dedupl obj = deduplicator(track obj)
snapshot = create data model (dedupl obj)
federate to cloud(snapshot, dC bcknd)

. get_detected_objects()

tracker()

. deduplicator()

. data_model_creation()
. federate_to_cloud()

ACACES 2021, Fiuggi, Eduardo Quifiones 133

def

def

def

def

def

get detected objects (cam id):
return DNN detect obj (cam id)

(obj 1list, track obj):
return track(obj list, track obj)

deduplicator (track obj):
return dedupl obj (track obj)

create data model (dedupl obj):
snapshot = model.create(dedupl obj)
return snapshot

federate to cloud(snapshot, dC bcknd):
snapshot.federate (backend to federate)

©0©©
©—0 0 O._




|_~ Detection Tracking :
—0 S cetoaon
F%—'| Detection H Tracking S

## Main function ##
while True:
for i, camid in cameras:
obj list = get detected objects (camid)
track obj[i] = (obj 1list, track obj[il])

dedupl obj = deduplicator(track obj)
snapshot = create data model (dedupl obj)
federate to cloud(snapshot, dC bcknd)

. get_detected_objects()

tracker()

. deduplicator()

. data_model_creation()
. federate_to_cloud()

ACACES 2021, Fiuggi, Eduardo Quifiones 134

@task (returns=1list)
def get detected objects (cam id):
return DNN detect obj (cam id)

@task (obj 1list=IN, track obj=IN, returns=list)
def (obj 1list, track obj):
return track(obj list, track obj)

@task (obj 1ist=COLLECTION_IN, returns=list)
def deduplicator(track obj):
return dedupl obj (track obj)

@task (dedupl obj=IN, model = IN)

def create data model (dedupl obj):
snapshot = model.create(dedupl obj)
return snapshot

@task (snapshot=IN, dC bcknd = IN)
def federate to cloud(snapshot, dC bcknd):
snapshot.federate (backend to federate)

©0©©
©—0 0 O._




_.-__——_

—.—.—

Execu ion tlme_Eharacterlsatl I

Resource 1
Resource 2

Resource N

44, 736,496,728 ne

COMPSs task
execution times  data transfer times

— - N
- I BN

Information extracted
E -J - - from Extrae + Paraver!

\ 4

receive_boxes

mi L FEm A
- execute_trackin
I I O e I IR B decupiicat
1T e e o Bl persist_inf
[ federate_inf
I'EICIRIRRE I 111 nrnm

remove_objects_from_dataclay

-~




e L EE—

' 4
-—" ) e P a— l

Statlcllocatlon Heurlstlcs

Resource 1

Resource 2

Resource N

»
i

. task deadlines

h
1 1
Il 1
I I
1 1
1 1
1 1
L L
1 1
1 L
1 1
1 1
1 1
1 1
N L
1 I
<

<

<

<«

1

1

<

<

Response time Upper Bound (R?)

v" Heuristics to minimize end to end response time

136 ((::;.,ww |

ACACES 2021, Fiuggi, Eduardo Quifiones



R

——-——-

(TDG of 1 second of ™. * .
execution)

ACACES 2021, Fiuggi, Eduardo Quifiones

137

65

D
o

Execution time (ms)
(%))
(6]

50

A

Response time upper bound R“?

e T

20% below Rub
95% decrease
in jitter
[———]
v .
-
‘E —_— ‘
51 = 9 h n
T ) 3 n ~
>
= J

\ ( J

Y Y
Heuristics based Heuristics based
on successors on time




Resource 1

Resource 2 A

TEMPORARILY

OUT OF
SERVICE
p— —

Resource N

I« »!
« 'I

workflow response time
new response time (after rescheduling)

I
I
I
I
1
I
I
I
o
gl
I

<
<

v Re-scheduling based on resource availability at runtime

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 138 (C —y —



A RI CPSTAERart I\/Iobllltyr _.

Extract valuable knowledge from a distributed sensing infrastructure,
executed on a distributed computing infrastructure

|.% —» Detection

|_% —>» Detection
A Software Architecture for Extreme-Scale

—_—— Edge and Cloud Computation: A
Highly Distributed Software for L L n d I I y  Big-Data AnalyticS in Fog CompuTing Ecosystems

== == BigDataAnalytics

Y

EGANE Object | || Hazard
aggreg detection

\ 4

Tracking

1|IIII:|)
”IIIIIII

:”::“II

elastic-project.eu

class-project.eu
(City of Florence)

(City of Modena)

ACACES 2021, Fiuggi, Eduardo Quifiones 139



A RI 1 CP%: A Smart I\/Io_lb_ilﬁitvjﬁ:D‘m

City Mobility
System City cameras
\

Tram sensors

[ _ ’ B ) -
g “%b_‘ “%é-q R =)

Data Analytics Methods
(COMPSs tasks)

.
--------------------------

. Tram position
. Object recognition
| f . UTC/Supervisor consolidation
AN . Data fusion
. Data aggregation
o supervisor O - e | Tramway . Dashboard
City Scope [ mun | [ H yo . Hazard detection
scope & == — scope . Alert visualization (cars/trams)

et e e ———————— i 10. Electric power consumption
ACACES 2021, Fiuggi, Eduardo Quifiones 140 11. Defect Detector

W oONOO UL WN:



A RI CPS “A Smart I\/Iobllltyr h

pins

.+ edge

City Mobility ) -
System City cameras Tram sensors - computers
V—A—\ 0
g e el e,

Supervisor

city Scope o o m -srzzr:e“’ay

scope

((»)
m camera ﬁ ‘ :

i traffic control edge : : H
device(s) ~ V2X  computer wireless : edge traffic control H
station bridge : : computer device(s) V2x i
Ssssssssssssssssssssssssssssssssssssssssssssssssannnnnnnnd H stationE

Field cabinet

ACACES 2021, Fiuggi, Eduardo Quifiones (e.g. pole | semaphore / other)

Described in the resources.xml file!



A RI CPS A Smart I\/Iobllltyr _

City Mobility )
System City cameras Tram sensors
V—A—\ 0
g t‘f; \éﬁ - \éﬁ -
4 3 8 8
5 5
vy ¥
6)«—(6)« >@ @
8 J ﬂ
7 9 > —
Supervisor o
City o 2 w Tramway
= \ 4
scope ST | TT scope

Described in the resources.xml file!

ACACES 2021, Fiuggi, Eduardo Quifiones

pins

= edge
computers

traffic control edge . H
device(s) V2X computer “I’)I:ledl e:s :
station 9

Field cabinet
\ (e.g. pole / semaphore / other)

(@)
m camera ﬁ ‘ :

edge traffic control H
computer device(s) VZ.X :
station 2




e

et

-"‘

A eaI CPS: A Smart MoBﬂityﬁ

Simultaneous processing of 3 video sources
with the COMPSs data analytics workflow

801

Rub
n
£ 70
)
E
S 60
[
ie
-IS S )
O 50 ~42%
o  / ~29%
" . \ 4
40
O = %)
e 3 2
.|

ACACES 2021, Fiuggi, Eduardo Quifiones 143 ((



= ”"" — =

P -

_—-—l—l BPE Mmmesem— = —

Concl sion

e COMPSs provides a task-based framework for the
development of complex data-analytics workflows
— Similar principles of OpenMP

— Time predictability is achieved by means of static
allocation heuristics

* The use of tracing tools (e.g., Extrae and Paraver) are needed to
incorporate the required information and further understand the

execution behaviour

* Currently being applied in real CPS projects

Bascelona
ACACES 2021, Fiuggi, Eduardo Quifiones 144 ( —y —



S :
e i
= — R e~
- e e -
— é-!_ —-—_

Home-fake Message

1. CPS requires parallel computation to cope with the performance
requirements of the most advanced functionalities, and...

2. ...current task-based parallel programming models allows to reasoning
about functional correctness and time predictability while removing from
developers the responsibilty of managing the complexity of parallel
execution

3. Unfortunately, reasoning is not enough... it must be guaranteed!!!

VERY INTERESTING RESEARCH IS
STILL PENDING! e

¢
ACACES 2021, Fiuggi, Eduardo Quifiones 145 \



Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-
Physical Computing Domains

Eduardo Quinones
{eduardo.quinones@bsc.es}

ACACES 2021, Fiuggi




