
ACACES, Fiuggi, 2021, 12-18 Sep

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-

Physical Computing Domains

Eduardo Quiñones
{eduardo.quinones@bsc.es}

Welcome!

What are your expectations on this course?
(or why did you choose this course?)

Goal of this course:
Understanding the benefits and the research challenges of

applying task-based parallel programming models (OpenMP
and COMPSs) when developing Cyber-Physical Systems

(CPS)

2ACACES 2021, Fiuggi, Eduardo Quiñones

Structure of the Course
1. Introduction

– Cyber-Physical Systems (CPS)
– Task-Based Parallel Programming Models: OpenMP and COMPSs

2. Lesson 2: OpenMP
– API, execution model and memory model
– Challenges of applying OpenMP to CPS

3. Lesson 3: OpenMP and CPS
– Functional correctness and time predictability

• OpenMP tracing

– Model driven engineering and OpenMP
4. Lesson 4: Distribution across the compute continuum: COMPSs

– API, execution model and memory model
– Functional correctness and time predictability

• COMPSs tracing

– A real CPS: A smart mobility application

3ACACES 2021, Fiuggi, Eduardo Quiñones

ACACES 2021, Fiuggi

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-

Physical Computing Domains

Lesson 1: Introduction

Eduardo Quiñones
{eduardo.quinones@bsc.es}

Outline
• Cyber-Physical Systems (CPS)
– Requirements and computing infrastructure
– Types of CPS
– Software development complexity

• Task-based Parallel Programming Models
– Introduction to parallel programming models
– OpenMP and COMPSs
– Model Driven Engineering

5ACACES 2021, Fiuggi, Eduardo Quiñones

Performance becomes as important as
other non-functional requirements!

Network of HW/SW
components (cyber) that must

operate correctly in response to
its (physical) inputs from a

functional and non-functional
perspective

The Convergence of High-Performance and
Real-Time Computing Domains

66

Computing Spectrum
High Performance
Computing (HPC)

Systems

Cyber-Physical
Systems (CPS)

Massive parallel systems
that operates as fast as

possible

ACACES 2021, Fiuggi, Eduardo Quiñones

• CPS integrates the computation, networking and
physical processes
– Non-functional requirements (NFR) are inherited from the

Cyber-physical interactions

• Embedded systems are typically responsible of the
control part of the CPS
– Embedded systems must fulfil the NFR from CPS

CPS vs. Embedded Systems

7ACACES 2021, Fiuggi, Eduardo Quiñones

Non-functional Requirements (NFR)
• Inherited due to the cyber-physical interactions, e.g.,

– Real-time: The end-to-end response time (from sensor to actuator) must
be within a given time budget

– Power/Thermal: The energy/temperature of the computing elements
must be within a given budget due to power supply/operational
environment limitations

– Safety: CPS must be built guaranteeing the correctness and integrity of its
operation

– Security: CPS must prevent external elements not to affect the correctness
and integrity of the system

• Performance: CPS must provide the computing power to
implement advanced functionalities

8ACACES 2021, Fiuggi, Eduardo Quiñones

Processor Design Trend

99

Irruption of multi-cores

Heterogeneous and
Parallel computing
becomes key to cope
with performance
requirements

ACACES 2021, Fiuggi, Eduardo Quiñones

Converging HPC and CPS:
Parallel and Heterogeneous Computing

10

NVIDIA Jetson Family
(GPU-based)

Kalray MPPA Coolidge
(80-core fabric)

NVIDIA A100
(GPU-based)

Intel Xeon Series
(40-core fabric)

HPC Domain (~300W) Embedded Domain (~10-20W)

Xilinx Versal
(GPU- and FPGA-based with
dynamic partial reconfiguration)

CPS takes full benefit of heterogeneous
computing due to the dedicated

accelerators and low power consumption

ACACES 2021, Fiuggi, Eduardo Quiñones

Heterogeneous and Parallel Processor
Architectures
Host-centric paradigm: The parallel computation is orchestrated
by the general-purpose multi-core

11

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Interface with the
(physical) world

Addressable memory by the
different computing elements

Reconfigurable logic
including dynamic partial
reconfiguration

Network on Chip (NoC)

Optimised HW functions

Accelerator for optimized
graphical processing, linear
algebra and deep learning

General purpose multi-core for
control-flow applications and

parallel orchestration

ACACES 2021, Fiuggi, Eduardo Quiñones

Compute Continuum: From Edge to Cloud

CPS is suitable for IoT and edge computing
paradigms
• The computation is selectively move

close to the data-sources so decision-
making occurs as close as possible
– Enables faster real-time processing, higher

privacy control and lower network costs
– The use of powerful heterogeneous

embedded processor architectures
becomes fundamental

• Cloud computing is used to execute
computational intensive and batch
processes

12

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Com
pute Continuum

ACACES 2021, Fiuggi, Eduardo Quiñones

Two types of CPS
• Tighly-couple CPS

– Subsystems execute within the same processors or in a
controlled (and reliable) network of few processors (e.g.,
automotive domain)

• Loosely-couple CPS
– Subsystems execute within a non-reliable network of

heterogenous computing elements, i.e., the compute
continuum (e.g., smart cities)

– Some subsystems may implement tighly-couple CPS

13ACACES 2021, Fiuggi

Tighly Couple CPS Example:
Vehicle Collision Detection

14

14

An Adavanced Driving Assistant System (ADAS) used to identify
objects in front of vehicles and detect potential collisions

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Multi-core (Host)TPU/GPU
(Accelerator)

Peripherals HW
func

ACACES 2021, Fiuggi, Eduardo Quiñones

Loosely-couple CPS Example :
Smart City Collision Detection

15

Sensing capabilities of vehicles and cities can be combined to
identify hazardous situations

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking

Compute Continuum

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

Tram StopStreetlight

[ICT-01-2019 AMPERE] - page 12 of 90

The block diagram of the ODAS use-case is depicted in Figure
4. The use-case incorporates two main subsystems: the Sensor
Data Fusion (SDF) and the AI Analytics (AI) components.
The SDF component will be in charge of collecting a large mass
of raw data from the multiple advanced sensors installed in tram
vehicle, i.e., optical and thermal cameras, radars and LiDARs
(light detection and ranging). Cameras are a very good tool for
classifying objects (rails, signs vehicle, people...) through deep
learning technologies; LiDAR and radar are good at estimating
the position of objects around the vehicle. Each of these sensors
has advantages and disadvantages depending on the operational
scenarios, environmental and lighting conditions. For instance,
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the
tramway infrastructure and extract knowledge that will be displayed to the tram driver.

 The two components will be distributed and executed in a COTS parallel
and heterogeneous platform installed on-board tram vehicles, featuring
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation.
Moreover, the platform will host multiple standard hardware interfaces to
ease the integration of the system into a wide range of operation conditions.
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an
urban environment with traffic mixed with cars and pedestrians (see Figure 5).

AMPERE Use Case Key Performance Indicators (KPIs)
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases.

Use case KPI Measure

Intelligent Pre-
dictive Cruise
Control (PCC)

(BOS)

Satisfy the high computation demands of PCC algorithms while
guaranteeing the safety properties of the powertrain control and
ACC functionalities.

High system utilization (>
90%) with provable safety
properties

Maintain the functional properties of the PCC when integrating
further synthetic applications, to demonstrate the compositional
integration capabilities of the AMPERE ecosystem.

Maintain exactly the same
functional properties

Providing a reduced development effort for integrating new
functionalities in an existing system, by coupling the AMPERE
ecosystem with existing automotive standards and tools.

30% reduction of develop-
ment efforts

Obstacle Detec-
tion and

Avoidance Sys-
tem (ODAS)
(THALIT)

Reduce the development and integration costs of the ADAS
functional critical software modules by employing the
AMPERE ecosystem starting from the system design phase.

< 20% of development
and integration costs

Improve the object detection capability and reduce the false
alarms rate in critical environmental conditions (fog, rain, at
night) by combining AMPERE with existing on-board systems.

- > 20% objects detected
- < 15% False alarms rate

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.

> 20% reduction in com-
puting energy needs

Figure 5: Tramway at Florence

√
CAMERA

RADAR

Pre-processing
Units

Pre-processing
Units

Pre-processing
Units

Sensor
Data

Fusion

AI
Analytics

GPUs
Heterogenous Platform

(CPU+GPU+FPGA)

Figure 4. Block diagram of the ODAS use-case.

Connected Car

Wifi
Eth

Wifi
LTE
5G

Eth

ACACES 2021, Fiuggi, Eduardo Quiñones

Compute Continuum

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

Tram StopStreetlight

[ICT-01-2019 AMPERE] - page 12 of 90

The block diagram of the ODAS use-case is depicted in Figure
4. The use-case incorporates two main subsystems: the Sensor
Data Fusion (SDF) and the AI Analytics (AI) components.
The SDF component will be in charge of collecting a large mass
of raw data from the multiple advanced sensors installed in tram
vehicle, i.e., optical and thermal cameras, radars and LiDARs
(light detection and ranging). Cameras are a very good tool for
classifying objects (rails, signs vehicle, people...) through deep
learning technologies; LiDAR and radar are good at estimating
the position of objects around the vehicle. Each of these sensors
has advantages and disadvantages depending on the operational
scenarios, environmental and lighting conditions. For instance,
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the
tramway infrastructure and extract knowledge that will be displayed to the tram driver.

 The two components will be distributed and executed in a COTS parallel
and heterogeneous platform installed on-board tram vehicles, featuring
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation.
Moreover, the platform will host multiple standard hardware interfaces to
ease the integration of the system into a wide range of operation conditions.
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an
urban environment with traffic mixed with cars and pedestrians (see Figure 5).

AMPERE Use Case Key Performance Indicators (KPIs)
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases.

Use case KPI Measure

Intelligent Pre-
dictive Cruise
Control (PCC)

(BOS)

Satisfy the high computation demands of PCC algorithms while
guaranteeing the safety properties of the powertrain control and
ACC functionalities.

High system utilization (>
90%) with provable safety
properties

Maintain the functional properties of the PCC when integrating
further synthetic applications, to demonstrate the compositional
integration capabilities of the AMPERE ecosystem.

Maintain exactly the same
functional properties

Providing a reduced development effort for integrating new
functionalities in an existing system, by coupling the AMPERE
ecosystem with existing automotive standards and tools.

30% reduction of develop-
ment efforts

Obstacle Detec-
tion and

Avoidance Sys-
tem (ODAS)
(THALIT)

Reduce the development and integration costs of the ADAS
functional critical software modules by employing the
AMPERE ecosystem starting from the system design phase.

< 20% of development
and integration costs

Improve the object detection capability and reduce the false
alarms rate in critical environmental conditions (fog, rain, at
night) by combining AMPERE with existing on-board systems.

- > 20% objects detected
- < 15% False alarms rate

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.

> 20% reduction in com-
puting energy needs

Figure 5: Tramway at Florence

√
CAMERA

RADAR

Pre-processing
Units

Pre-processing
Units

Pre-processing
Units

Sensor
Data

Fusion

AI
Analytics

GPUs
Heterogenous Platform

(CPU+GPU+FPGA)

Figure 4. Block diagram of the ODAS use-case.

Connected Car

Wifi
Eth

Wifi
LTE
5G

Eth

Loosely-couple CPS Example:
Smart City Collision Detection

16

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking Tracking

Detection Tracking

Detection

Object
aggreg

Hazard
detection

Object
aggreg

Hazard
detection

Sensing capabilities of vehicles and cities can be combined to
identify hazardous situations

ACACES 2021, Fiuggi, Eduardo Quiñones

How would you develop such a CPS?
1. Exploit the parallel performance

capabilities of the (different)
processor architectures

2. Efficiently distribute the data-
analytics workflow across the
compute continuum

3. Guarantee functional correctness
and the non-functional
requirements of the CPS

17

Compute Continuum

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

Tram StopStreetlight

[ICT-01-2019 AMPERE] - page 12 of 90

The block diagram of the ODAS use-case is depicted in Figure
4. The use-case incorporates two main subsystems: the Sensor
Data Fusion (SDF) and the AI Analytics (AI) components.
The SDF component will be in charge of collecting a large mass
of raw data from the multiple advanced sensors installed in tram
vehicle, i.e., optical and thermal cameras, radars and LiDARs
(light detection and ranging). Cameras are a very good tool for
classifying objects (rails, signs vehicle, people...) through deep
learning technologies; LiDAR and radar are good at estimating
the position of objects around the vehicle. Each of these sensors
has advantages and disadvantages depending on the operational
scenarios, environmental and lighting conditions. For instance,
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the
tramway infrastructure and extract knowledge that will be displayed to the tram driver.

 The two components will be distributed and executed in a COTS parallel
and heterogeneous platform installed on-board tram vehicles, featuring
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation.
Moreover, the platform will host multiple standard hardware interfaces to
ease the integration of the system into a wide range of operation conditions.
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an
urban environment with traffic mixed with cars and pedestrians (see Figure 5).

AMPERE Use Case Key Performance Indicators (KPIs)
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases.

Use case KPI Measure

Intelligent Pre-
dictive Cruise
Control (PCC)

(BOS)

Satisfy the high computation demands of PCC algorithms while
guaranteeing the safety properties of the powertrain control and
ACC functionalities.

High system utilization (>
90%) with provable safety
properties

Maintain the functional properties of the PCC when integrating
further synthetic applications, to demonstrate the compositional
integration capabilities of the AMPERE ecosystem.

Maintain exactly the same
functional properties

Providing a reduced development effort for integrating new
functionalities in an existing system, by coupling the AMPERE
ecosystem with existing automotive standards and tools.

30% reduction of develop-
ment efforts

Obstacle Detec-
tion and

Avoidance Sys-
tem (ODAS)
(THALIT)

Reduce the development and integration costs of the ADAS
functional critical software modules by employing the
AMPERE ecosystem starting from the system design phase.

< 20% of development
and integration costs

Improve the object detection capability and reduce the false
alarms rate in critical environmental conditions (fog, rain, at
night) by combining AMPERE with existing on-board systems.

- > 20% objects detected
- < 15% False alarms rate

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.

> 20% reduction in com-
puting energy needs

Figure 5: Tramway at Florence

√
CAMERA

RADAR

Pre-processing
Units

Pre-processing
Units

Pre-processing
Units

Sensor
Data

Fusion

AI
Analytics

GPUs
Heterogenous Platform

(CPU+GPU+FPGA)

Figure 4. Block diagram of the ODAS use-case.

Connected Car

Wifi
Eth

Wifi
LTE
5G

Eth

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

ACACES 2021, Fiuggi, Eduardo Quiñones

SW Development Complexity

18

Source: ITRS & Hardware-dependent Software, Ecker et al., Springer

This course will present the task-
based parallel programming
model to efficiently:
1. Exploit parallelism
2. Distribute computation

across the compute
continuum

3. Reason about the functional
and non-functional
correctness

ACACES 2021, Fiuggi, Eduardo Quiñones

Outline
• Cyber-Physical Systems (CPS)
– Requirements and computing infrastructure
– Types of CPS
– Software development complexity

• Task-based Parallel Programming Models
– Introduction to parallel programming models
– OpenMP and COMPSs
– Model Driven Engineering

19ACACES 2021, Fiuggi, Eduardo Quiñones

Parallel Programming Models

• A set of programming elements to describe the parallel
behaviour of an application and abstract the
complexities of the underlying parallel platform
– Granularity level of parallelism exploited: instruction,

statement, loop, procedural
– Synchronization model: coarse-grain, fine-grain
– Execution model: fork-join, thread-pool, etc.
– Memory model: Shared, distributed

• Commonly built on top of a base programming language
20ACACES 2021, Fiuggi, Eduardo Quiñones

Parallel Programming Models

Parallel Programming Models

• Mandatory to enhance productivity
– Programmability. Abstracts the parallelism while

hiding the underlying computing platform
complexities

– Portability/scalability. The same source code is
valid in different parallel platforms

– Performance. Rely on run-time mechanisms to
exploit the performance capabilities of parallel
platforms

21

Conventional Models

ACACES 2021, Fiuggi, Eduardo Quiñones

Types of Parallel Programming Models
• Hardware-centric

– Provide a user-friendly interface to tune the application to native platform features,
e.g., NVIDIA CUDA

– None portable
• Application-centric

– The application must fulfill the execution model to exploit parallelism, e.g. OpenCL
– May require a full rewriting process of the application, impacting on programmability

• Parallelism-centric
– Parallelism is expressed by means of constructs various levels of abstraction, e.g.

POSIX threads, OpenMP, OpenACC, MPI, COMPSs, Spark, Ray
– This approach allows flexibility and expressiveness, while decoupling design from

implementation

22ACACES 2021, Fiuggi, Eduardo Quiñones

Type of Parallelism
• Structured parallelism: The parallel

execution follows a regular pattern
– Very suitable for parallel loops
– E.g., fork-join, pipeline

• Unstructured parallelism: The
parallel execution does not fit
within a pattern, or it change
dynamically
– Suitable for procedural-level

parallelism
– E.g., tasking

23

parallel for (i=LB; i<UB; ++i)
do_computation();

endfor

Distribute the loop iteration
among parallel units (threads)

fork

join

ACACES 2021, Fiuggi, Eduardo Quiñones

task
do_computation_1();

endtask
…
task

do_computation_N();
endtask

Distribute tasks among
parallel units (threads)

Parallel Programming Models and
Programming Languages

24

Model Base
Language

Type of
PPM

Type of
architect

Type of
Parallelism

CUDA C/C++,
Python

HW-
centric

NVIDIA GPU Struct/
Unstruct

OpenCL C/C++ App-
centric

GPU/
FPGAs

Struct

OpenMP C/C++ Parallel-
centric

Shared
mem

Struct/
Unstruct

Pthreads C/C++ Parallel-
centric

Shared
mem

Unstruct

MPI C/C++,
Python

Parallel-
centric

Distributed
mem

Unstruct

COMPSs C++, Java
Python

Parallel-
centric

Distributed
mem

Unstruct

Spark Java,
Python

Parallel-
centric

Distributed
mem

Struct

Ray C++,Java
Python

Parallel-
centric

Distributed
mem

Unstruct
ACACES 2021, Fiuggi, Eduardo Quiñones

Why OpenMP?

ACACES 2021, Fiuggi, Eduardo Quiñones

• Mature language constantly reviewed (last release Nov 2020, v5.1)
– Defacto industrial standard in HPC
– Active research community with an increasing interest on the CPS domain

• Productivity in parallel programming
– Performance

• Exploitation of structured and unstructured fine-grain parallelism coupled with an advanced accelerator model
• Powerful task-based model supporting fine-grain synchronization mechanisms based on data-dependencies

among tasks
• Performance analysis tools of the parallel execution

– Portability
• Supported by many chip vendors used in CPS (Intel, IBM, ARM, NVIDIA, TI, Gaisler, Kalray)

– Programmability
• Interoperability with other programming models (e.g., CUDA, OpenCL)
• Allows incremental parallelization (#pragma omp) that can be easily compiled sequentially

Why COMPSs?

ACACES 2021, Fiuggi, Eduardo Quiñones

• Programming distribute framework highly inspired in the OpenMP tasking model
– Programs are written sequentially in Python, Java or C++
– The code is annotated to describe asynchronous procedures (task) than can execute in parallel

• Includes a fine-grain synchronization mechanism based on data dependencies among tasks

• Productivity in distributed programming
– Performance

• Exploitation of distributed computation in heterogeneous HPC and edge/cloud environments
• Powerful performance analysis tool of the distributed execution

– Portability
• Supports many HPC and cloud technologies: DFS, Docker, Kubernetes, Serverless, etc.

– Programmability
• Interoperability with other programming models (e.g., OpenMP)
• Currently available for Python, Java and C++
• Allows incremental parallelization (@task) to easily execute sequentially

void main() {
#pragma omp parallel
#pragma omp master
{

int x,y;
#pragma omp task depend(out:x,y)
{ f1(&x,&y); }
#pragma omp task depend(in:x)
{ f2(x); }
#pragma omp target map(to:y) depend(in:y)
{ f3(y); }

}
}

OpenMP Tasking Model

ACACES 2021, Fiuggi, Eduardo Quiñones

2. Tasks executed
on the host

3. Tasks executed on the host and
accelerator when f1 completes

void main() {
int x,y;
f1(&x,&y);
f2(x);
f3(y);

}

Sequential version

OpenMP version

Executes on the host

Executes on the
accelerator

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

1. Open
parallelism

fork

join

f3
f1

f2

main

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking

COMPSs Tasking Model

Compute Continuum

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

Tram StopStreetlight

[ICT-01-2019 AMPERE] - page 12 of 90

The block diagram of the ODAS use-case is depicted in Figure
4. The use-case incorporates two main subsystems: the Sensor
Data Fusion (SDF) and the AI Analytics (AI) components.
The SDF component will be in charge of collecting a large mass
of raw data from the multiple advanced sensors installed in tram
vehicle, i.e., optical and thermal cameras, radars and LiDARs
(light detection and ranging). Cameras are a very good tool for
classifying objects (rails, signs vehicle, people...) through deep
learning technologies; LiDAR and radar are good at estimating
the position of objects around the vehicle. Each of these sensors
has advantages and disadvantages depending on the operational
scenarios, environmental and lighting conditions. For instance,
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the
tramway infrastructure and extract knowledge that will be displayed to the tram driver.

 The two components will be distributed and executed in a COTS parallel
and heterogeneous platform installed on-board tram vehicles, featuring
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation.
Moreover, the platform will host multiple standard hardware interfaces to
ease the integration of the system into a wide range of operation conditions.
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an
urban environment with traffic mixed with cars and pedestrians (see Figure 5).

AMPERE Use Case Key Performance Indicators (KPIs)
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases.

Use case KPI Measure

Intelligent Pre-
dictive Cruise
Control (PCC)

(BOS)

Satisfy the high computation demands of PCC algorithms while
guaranteeing the safety properties of the powertrain control and
ACC functionalities.

High system utilization (>
90%) with provable safety
properties

Maintain the functional properties of the PCC when integrating
further synthetic applications, to demonstrate the compositional
integration capabilities of the AMPERE ecosystem.

Maintain exactly the same
functional properties

Providing a reduced development effort for integrating new
functionalities in an existing system, by coupling the AMPERE
ecosystem with existing automotive standards and tools.

30% reduction of develop-
ment efforts

Obstacle Detec-
tion and

Avoidance Sys-
tem (ODAS)
(THALIT)

Reduce the development and integration costs of the ADAS
functional critical software modules by employing the
AMPERE ecosystem starting from the system design phase.

< 20% of development
and integration costs

Improve the object detection capability and reduce the false
alarms rate in critical environmental conditions (fog, rain, at
night) by combining AMPERE with existing on-board systems.

- > 20% objects detected
- < 15% False alarms rate

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.

> 20% reduction in com-
puting energy needs

Figure 5: Tramway at Florence

√
CAMERA

RADAR

Pre-processing
Units

Pre-processing
Units

Pre-processing
Units

Sensor
Data

Fusion

AI
Analytics

GPUs
Heterogenous Platform

(CPU+GPU+FPGA)

Figure 4. Block diagram of the ODAS use-case.

Connected Car

Wifi
Eth

Wifi
LTE
5G

Eth

@task(x=OUT,y=OUT)
def f1():

…
return x,y

@task(x=IN)
def f2(x):

…

@task(y=IN)
def f3(y)

…
def main():

x,y=f1()
f2(x)
f3(y)

Tasks executed
across the compute
continuum

def f1():
…
return x,y

def f2(x):
…

def f3(y)
…

def main():
x,y=f1()
f2(x)
f3(y)

f3f1 f2main

Sequential version COMPSs version

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking

Principle behind Tasking Models
• Tasking provides a great expressiveness to describe the parallel

nature of applications
– Developers specify what the application does and not how it is done
– The parallel framework is responsible of orchestrating the execution

• Tasking facilitates programmability, but …
– … complicates deriving functional and

non-functional correctness

ACACES 2021, Fiuggi, Eduardo Quiñones

Computation is not fully controlled by the
programmer but by the parallel framework

Main Factors Impacting Parallel Execution

1. Parallel structure of the application (including data usage):
Task Dependency Graph (TDG) or Direct Acyclic Graph (DAG)

2. The execution and memory model: The Runtime Scheduler
responsible of mapping task to parallel units

30ACACES 2021, Fiuggi, Eduardo Quiñones

@task(x=OUT,y=OUT)
def f1():

…
return x,y

@task(x=IN)
def f2(x):

…
@task(y=IN)
def f3(y)

…
def main():

x,y=f1()
f2(x)
f3(y)

COMPSs version
void main() {

#pragma omp parallel
#pragma omp master
{

int x,y;
#pragma omp task depend(out:x,y)
{ f1(&x,&y); }
#pragma omp task depend(in:x)
{ f2(x); }
#pragma omp target map(to:y) depend(in:y)
{ f3(y); }

OpenMP version

f3
f1

f2

main

f3f1 f2main

f1

f2 f3

yx

ma
in

Model Driven Engineering and
Parallel Programming Models

31ACACES 2021, Fiuggi, Eduardo Quiñones

Sensors ActuatorsMDE
(e.g. CAPELLA,

AMALTHEA,
AUTOSAR)

Logic
Controller

Model Driven Engineering (MDE) in CPS
1. Construction of complex systems
2. Formal verification of functional and non-functional requirements

with composability features
3. Correct-by-construction paradigm by means of code generation

• Suitable only for single-core execution or with very limited multi-core support

Parallel Programming Models
1. Mandatory for SW productivity in terms of

• Programmability: Parallel abstraction while hiding HW complexities
• Portability: Compatibility multiple HW platforms
• Performance: Exploiting parallel capabilities of underlying HW

2. Efficiet offloading to HW acceleration devices for an energy-
efficient parallel execution

Run-time
parallel

frameworks

Parallel
Programming

Models
(e.g. OpenMP,

OpenCL,
CUDA, COMPSs)

Parallel
Execution

Model

Parallel Units

Parallel Untits

Parallel Units

Gap between the MDE used for CPS and the PPM supported by parallel platforms

Model Driven Engineering and
Parallel Programming Models

32ACACES 2021, Fiuggi, Eduardo Quiñones

Bridge
the gap

1. Synthesis methods for an efficient generation of
parallel source code, while keeping non-
functional and composability guarantees

2. Run-time parallel frameworks that guarantee
system correctness and exploit the performance
capabilities of parallel architectures

3. Integration of parallel frameworks into MDE
frameworks

Sensors ActuatorsMDE
(e.g. CAPELLA,

AMALTHEA,
AUTOSAR)

Logic
Controller

Run-time
parallel

frameworks

Parallel
Programming

Models
(e.g. OpenMP,

OpenCL,
CUDA, COMPSs)

Parallel
Execution

Model

Parallel Units

Parallel Untits

Parallel Units

Conclusion:
CPS and Parallel Computation
1. CPS requires parallel computation to cope with the performance

requirements of the most advanced functionalities, but…
2. … current parallel frameworks remove from developers the responsibilty of

managing the parallel execution, difficulting deriving guarantees of
functional and non-functional correctness

3. … most CPS are implemented using model driven engineering approaches

This course will present the benefits and challenges of applying tasking parallel
programming model

Ø Focus on two specific parallel programming languages: OpenMP and COMPSs
Ø The same concepts applies to other tasking languages

33ACACES 2021, Fiuggi, Eduardo Quiñones

Recap of Lesson 1 in one slide

34

Compute Continuum

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

Tram StopStreetlight

[ICT-01-2019 AMPERE] - page 12 of 90

The block diagram of the ODAS use-case is depicted in Figure
4. The use-case incorporates two main subsystems: the Sensor
Data Fusion (SDF) and the AI Analytics (AI) components.
The SDF component will be in charge of collecting a large mass
of raw data from the multiple advanced sensors installed in tram
vehicle, i.e., optical and thermal cameras, radars and LiDARs
(light detection and ranging). Cameras are a very good tool for
classifying objects (rails, signs vehicle, people...) through deep
learning technologies; LiDAR and radar are good at estimating
the position of objects around the vehicle. Each of these sensors
has advantages and disadvantages depending on the operational
scenarios, environmental and lighting conditions. For instance,
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the
tramway infrastructure and extract knowledge that will be displayed to the tram driver.

 The two components will be distributed and executed in a COTS parallel
and heterogeneous platform installed on-board tram vehicles, featuring
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation.
Moreover, the platform will host multiple standard hardware interfaces to
ease the integration of the system into a wide range of operation conditions.
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an
urban environment with traffic mixed with cars and pedestrians (see Figure 5).

AMPERE Use Case Key Performance Indicators (KPIs)
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases.

Use case KPI Measure

Intelligent Pre-
dictive Cruise
Control (PCC)

(BOS)

Satisfy the high computation demands of PCC algorithms while
guaranteeing the safety properties of the powertrain control and
ACC functionalities.

High system utilization (>
90%) with provable safety
properties

Maintain the functional properties of the PCC when integrating
further synthetic applications, to demonstrate the compositional
integration capabilities of the AMPERE ecosystem.

Maintain exactly the same
functional properties

Providing a reduced development effort for integrating new
functionalities in an existing system, by coupling the AMPERE
ecosystem with existing automotive standards and tools.

30% reduction of develop-
ment efforts

Obstacle Detec-
tion and

Avoidance Sys-
tem (ODAS)
(THALIT)

Reduce the development and integration costs of the ADAS
functional critical software modules by employing the
AMPERE ecosystem starting from the system design phase.

< 20% of development
and integration costs

Improve the object detection capability and reduce the false
alarms rate in critical environmental conditions (fog, rain, at
night) by combining AMPERE with existing on-board systems.

- > 20% objects detected
- < 15% False alarms rate

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.

> 20% reduction in com-
puting energy needs

Figure 5: Tramway at Florence

√
CAMERA

RADAR

Pre-processing
Units

Pre-processing
Units

Pre-processing
Units

Sensor
Data

Fusion

AI
Analytics

GPUs
Heterogenous Platform

(CPU+GPU+FPGA)

Figure 4. Block diagram of the ODAS use-case.

Connected Car

Wifi
Eth

Wifi
LTE
5G

Eth

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Tasking Model

Computation is not fully
controlled by the programmer
but by the parallel framework

Sensors ActuatorsMDE
(e.g. CAPELLA,

AMALTHEA,
AUTOSAR)

Logic
Controller Challenge!

Non-Functional
Requirements!

ACACES 2021, Fiuggi

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-

Physical Computing Domains

Lesson 2: OpenMP

Eduardo Quiñones
{eduardo.quinones@bsc.es}

Outline
• OpenMP API
• Execution Model and Memory Model
• Spawning and Distributing Parallelism
• Synchronization and Data-Sharings
• Challenges of applying OpenMP to CPS
• Conclusions

36ACACES 2021, Fiuggi, Eduardo Quiñones

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

OpenMP API

ACACES 2021, Fiuggi, Eduardo Quiñones 37

Compiler directives
• Annotations in the source code
• Can be easily ignored by the compiler, allowing for incremental parallelization
• Directives can include clauses to define properties of the directive

#pragma omp parallel num_threads(4)
{…}

omp_set_num_threads(4);

sh$ OMP_NUM_THREADS=4 ./openmp_exec

Runtime library routines
• Get/Set runtime information from source code

Environment variables
• Set runtime information at execution time

Execution Model: Fork-Join
• OpenMP programs start execution with a unique initial thread
• Worker threads are spawned in parallel regions (#pragma omp parallel)
• The thread encountering a parallel region becomes the master thread, and

together with worker threads, form a team
• Worker threads are destroyed (or put to sleep) between parallel regions

38ACACES 2021, Fiuggi, Eduardo Quiñones

A

B

A
B
C
D

Parallel region 1
(team)

Parallel region 2
(team)

Initial thread
Master thread
Worker thread
Sleeping worker

Serial part Serial part Serial part

Fork
ForkJoin

Join

Execution Model: Fork-Join

ACACES 2021, Fiuggi, Eduardo Quiñones

…
#pragma omp parallel num_threads(2)
{

…
}
…
#pragma omp parallel num_threads(4)
{

…
}

A

B

A
B
C
D

Parallel region 1
(team)

Parallel region 2
(team)

Initial thread
Master thread
Worker thread
Sleeping worker

Serial part Serial part

Fork
ForkJoin

Join

Team of OpenMP Threads
(#pragma omp parallel num_threads)

Execution Model: Abstraction Layers

40ACACES 2021, Fiuggi, Eduardo Quiñones

OpenMP Task
(#pragma omp task)

OS Threads
(pool of threads)

HW Threads/HW Cores
Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Ready tasks queue

OpenMP task to OpenMP
thread scheduler

OpenMP thread to OS
thread mapping

OS thread to HW
scheduler

(Im
pl

em
en

ta
tio

n
de

pe
nd

en
t!

)

Memory Model:
Relaxed-consistency shared-memory
• Different views of the memory

• Designed for shared memory nodes (UMA/NUMA)
– Extended for heterogeneous computing nodes, i.e., host + accelerator(s)

• The access to variables can be shared or private
– shared, firstprivate, private, lastprivate clauses

• Memory consistency is enforced by (implicit/explicit) flush operations

41ACACES 2021, Fiuggi, Eduardo Quiñones

Main memory Shared for all threads

Temporary view Copy of the main memory for a given
thread and a region of the execution

Threadprivate
memory

Particular to each thread
(not recommended to be used!)

thread 1 thread 2

Spawning Parallelism
• Parallelism is spawned when a parallel

construct is found
– Threads of a team are synchronized when a

barrier construct is found
– There is an implicit barrier at the end of a parallel

region.
• Parallel regions can be nested.
• The number of threads suitable for each region

can be defined by the programmer
– Construct clause: num_threads(4)
– Runtime library routine: omp_set_num_threads(4)
– Environment variable: OMP_NUM_THREADS=4

42ACACES 2021, Fiuggi, Eduardo Quiñones

…

#pragma omp parallel num_threads(2)
{…}

…

#pragma omp parallel num_threads(4)
{

…
#pragma omp parallel num_threads(3)
{…}
…

}

…

43ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: Hello World Program

• How many messages?
• In which order?

44ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: Hello World Program

• How many messages? 4
• In which order? UNDETERMINED

A
B
C
D

Parallel region
(team)

Distributing Parallelism
• Thread-centric model

– Conceptual abstraction of user-level threads
– Structured data-parallelism
– Representative constructs: for and sections

• Task-centric model (introduced in v3.0, May 2008)
– Oblivious of the physical layout
– Structured and unstructured data- and task- parallelism
– Representative constructs: task and taskloop

45ACACES 2021, Fiuggi, Eduardo Quiñones

Ø Prescriptive
ü Less overhead
ü Highly tunable

Ø Descriptive
ü Dynamic parallelism
ü Fine-grain

synchronization

Focus
of this

course!

Distributing parallelism with the thread model

46ACACES 2021, Fiuggi, Eduardo Quiñones

#pragma omp parallel num_threads(4)
#pragma omp for
for (i=LB; i<UB; ++i) {

do_computation();
}

#pragma omp parallel num_threads(4)
#pragma omp sections
{

#pragma omp section
{ do_computation_1(); }
…
#pragma omp section
{ do_computation_N(); }

}

loop-chuncks
Distribute among threads

structured
blocks

Parallel loops:

Parallel sections:

for loop schedule clause

47ACACES 2021, Fiuggi, Eduardo Quiñones

static:

static,n:

dynamic,n:

guided,n:

Assign a consecutive block of iterations
to each thread in a round-robin fashion

Define chunk size to enhance load
balance although introducing overhead

Allow threads to fetch chunks as they
are idle; chunck size can be defined as
well

Chunk size is proportional to the
number of unassigned iterations
divided by the number of threads;
chunck size can be defined as well

48ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: for loop

• How many messages?
• In which order?

49ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: for loop

• How many messages? 20
• In which order? UNDETERMINED

static,2static static

Distributing parallelism with the task model

50ACACES 2021, Fiuggi, Eduardo Quiñones

#pragma omp parallel num_threads(4)
#pragma omp master
{

#pragma omp task
{ do_computation_1(); }
…
#pragma omp task
{ do_computation_N(); }

}

#pragma omp parallel num_threads(4)
#pragma omp master
{

#pragma omp taskloop
for (i=LB; i<UB; ++i)

do_computation();
}

The team of threads executes
a set of ready tasks
Scheduling is implementation
defined

Ready task queueA task (i.e., a task region and
its data environment) is
generated when a thread
encounters a task construct

A taskloop distributes
iterations across tasks
generated by the construct

• The OpenMP fork-join model is not suitable for the tasking model
– The parallel construct replicates the encapsulated code to all threads

• The master and single constructs assigns the code within the parallel
region to a single thread

51ACACES 2021, Fiuggi, Eduardo Quiñones

Distributing parallelism with the task model

#pragma omp parallel \
num_threads(4)

{
A;

}

#pragma omp parallel \
num_threads(4)

#pragma omp master
{

A;
}

A A A A A

52ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: task

• How many messages?
• In which order?

53ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: task

• How many messages? 4
• In which order? UNDETERMINED

#pragma omp master

54ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: task

• Which units can run concurrently?
• Where does task can be inserted?

Granularity of the parallel execution
- Amount of execution done by each task
Degree of parallelism
- How many tasks can be potentially

executed simultaneously

55ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: task

56ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: task and taskloop

Equivalent if single iterations are distributed across threads: grainsize(strict:1)

Synchronization and data-sharings
• Mechanisms to define the order and the type of access to data

– Prevents data races: two threads access the same object and at least one of
them is a write

• Synchronization imposes an order of execution of parallel units
• Data-sharings define the scope at which a change in a variable is visible

57

Thread-centric model:
- barrier
- nowait (clause)

Task-centric model:
- taskwait
- taskgroup
- depend (clause)

- private (clause)
- firstprivate (clause)
- Lastprivate (clause)
- shared (clause)

Memory fences Memory consistency Mutual exclusion

- atomic
- critical

Memory Fences for the Thread Model

58ACACES 2021, Fiuggi, Eduardo Quiñones

barrier

• All threads of the team
must execute the barrier
and any pending work
before proceeding

nowait (clause)

• Avoid unnecessary implicit
synchronizations

#pragma omp parallel
{

#pragma omp for nowait
for (i=1; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;
#pragma omp for nowait
for (i=0; i<m; i++)

y[i] = sqrt(z[i]);
}

#pragma omp parallel
{

#pragma omp for
for (i=1; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;
#pragma omp for
for (i=0; i<m; i++)

y[i] = sqrt(z[i]);
}

Memory Fences for the Task Model

59ACACES 2021, Fiuggi, Eduardo Quiñones

taskwait

• The encountering task is
suspended until all
previous child tasks have
executed

taskgroup

• Generates a new region
where all inner tasks have
to finish before the
encountering thread can
proceed

#pragma omp task // T1
{

#pragma omp task // T2
{…}

}
#pragma omp task // T3
{…}
#pragma omp taskwait

#pragma omp taskgroup
{

#pragma omp task // T1
{

#pragma omp task // T2
{…}

}
#pragma omp task // T3
{…}

}

T1

T2T3

TW

T1

T2T3

TW

Memory Fences for the Task Model

60ACACES 2021, Fiuggi, Eduardo Quiñones

depend (clause)
• Enforce ordering

constraints on the
scheduling of tasks

• Defines data-flow
execution

for (int k = 0; k < nt; k++) {
#pragma omp task depend (inout: Ah[k][k])
potrf (Ah[k][k]);

for (int i = k + 1; i < nt; i++) {
#pragma omp task depend (in: Ah[k][k]) \

depend (inout: Ah[k][i])
trsm (Ah[k][k], Ah[k][i]);

}
for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++)
#pragma omp task depend (in: Ah[k][i], Ah[k][j]) \

depend (inout: Ah[j][i])
gemm (Ah[k][i], Ah[k][j], Ah[j][i]);

#pragma omp task depend (in: Ah[k][i]) \
depend (inout: Ah[i][i])

syrk (Ah[k][i], Ah[i][i]);
}}

Task Dependency
Graph (TDG)

Cholesky Factorization

Data-sharing attributes

61ACACES 2021, Fiuggi, Eduardo Quiñones

Main memory

Temporary
view

thread 1 thread 2

int a = 1, res;
#pragma omp parallel shared(res) firstprivate(a)
#pragma omp master
{

int x,y;
#pragma omp task shared(x) firstprivate(a)
x = a*a;
#pragma omp task shared(y) firstprivate(a)
y = a+a;
#pragma omp taskwait
res = x+y;

}

a=1
res

master task

a=1(copy)
&res
x,y

a=1(copy)
&x

task

thread 3

a=1(copy)
&y

• Defines the visibility of variable across
parallel regions
– shared, private, firstprivate

and lastprivate clauses

62ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: data-sharing + coarse grain
synchronizations

• Which portions can be concurrent?
• Which synchronizations are needed?
• Which are the data-sharing attributes?

63ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: data-sharing + coarse grain
synchronizations

Concurrent functions

Synchronization
(x and y are shared variables!)

Data-sharings:
• x and y are shared variables
• n is not shared among tasks

64ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: data-sharing + fine grain
synchronizations

• Which portions can be concurrent?
• Which synchronizations are needed?
• Which are the data-sharing attributes?

65ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: data-sharing + fine grain
synchronizations

…

…

Synchronization
(acc is a shared variable)

C[0] C[1] C[N-1]

acc

Mutual Exclusion

66ACACES 2021, Fiuggi, Eduardo Quiñones

atomic
• Ensures a specific storage location is accessed

atomically
• Only specific operations are allowed
• Decorators specify the type of access (e.g., update,

read, write,…)

critical
• Restricts execution of a structured block to a single

thread at a time
• Can be named
• Might perform worse than atomic but is more

flexible

#pragma omp parallel for \
shared(x, y, index, n)

for (i=0; i<n; i++) {
#pragma omp atomic update
x[index[i]] += work1(i);
y[i] += work2(i);

}

#pragma omp parallel shared(x, y) \
private(ix_next, iy_next)

{
#pragma omp critical(xaxis)
ix_next = dequeue(x);
work(ix_next, x);
#pragma omp critical(yaxis)
iy_next = dequeue(y);
work(iy_next, y);

}

Summary
Spawn parallelism

- parallel
- num_threads (clause)
- master/single

Distribute
parallelism

Thread-centric - for
- section

Task-centric - task
- taskloop

Synchronize &
Data-sharing

Memory
fence

- barrier
- nowait (clause)
- taskwait
- taskgroup
- depend (clause)

Memory
consistency

- private
- firstprivate
- lastprivate
- shared

Mutual exclusion - atomic
- critical

Let’s develop CPS with
OpenMP and so cope with the
the performance
requirements of the most
advanced CPS functionalities!

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking

Implementing CPS with OpenMP
• Page 1 of the OpenMP specification document says:

– Application developers are responsible for correctly using the
OpenMP API to produce a conforming program

68ACACES 2021, Fiuggi, Eduardo Quiñones

CPS correctness
cannot rely on magic!

Implementing CPS with OpenMP
• The complexity of parallel programming increases if guarantees on

functional and non-functional correctness must be provided
1. Functional correctness (safety) ensure a correct system operation

in response to its inputs guaranteeing system integrity
– Reliability: The property that ensures the system correctness
– Resiliency: The property that guarantees the system recovery if an

unexcepted event impacts on system correctness, e.g., a soft transient
error

2. Non functional correctness
– Time predictability: Reasoning about the timing behaviour of the parallel

execution to ensure the execution completes within a given deadline

69ACACES 2021, Fiuggi, Eduardo Quiñones

Conclusions
• OpenMP provides a great expressiveness to describe parallelism,

but…
– … puts all responsibility on functional correctness on the software

developer (not always the best option, even for HPC…)
– … does not provide any support to guarantee time predictability

70ACACES 2021, Fiuggi, Eduardo Quiñones

Next lesson will analyse OpenMP from a functional
correctness and time predictability perspective to enable

its applicability on the development of CPS

ACACES 2021, Fiuggi

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-

Physical Computing Domains

Lesson 3: OpenMP and CPS

Eduardo Quiñones
{eduardo.quinones@bsc.es}

Outline
• Reliability and resiliency on parallel execution
• Task Dependency Graph (TDG)
• Time predictability

– OpenMP task scheduler
– Schedulability analysis

• OpenMP Tracing
– Extrae and Paraver

• Model Driven Engineering
– Amalthea and OpenMP

• Conclusions

72ACACES 2021, Fiuggi, Eduardo Quiñones

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Reliability: Parallel Execution and Correctness

1. Data races
– Occur when two threads access the same shared object and at least one

of them is a write
– Data races result in undefined behavior

2. Wrong data sharing definition
– Occur when the visibility of the variables is not properly setup, resulting in

an incorrect execution

3. Deadlocks
– Occur when the program is waiting for an event that cannot happen

• Two threads are waiting in the same critical region
– Deadlock blocks the execution of the program forever

73ACACES 2021, Fiuggi, Eduardo Quiñones

74ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on:
Parallel Correctness

int a=2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a)
x = a;
#pragma omp task shared(y) firstprivate(b)
y = b;

res = x+y;
}
printf(“res: %d\n”,res);

int a=2, b=2, res=0;
#pragma omp parallel shared(res,a,b)
#pragma omp master
{

int x=0,y=0;
#pragma omp task shared(x) shared(a)
x = a;
#pragma omp task shared(y) shared(b)
y = b;
#pragma omp taskwait
res = x+y;

}
printf(“res: %d\n”,res);

• Which is the value of res
printed?

Race
condition!

✓

#pragma omp taskwait

75ACACES 2021, Fiuggi, Eduardo Quiñones

int a = 2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a)
x = a;
#pragma omp taskwait
#pragma omp task shared(y) firstprivate(b)
y = b;
#pragma omp taskwait
res = x+y;

}
printf(“res: %d\n”,res);

int a = 2, b=2, res=0;
#pragma omp parallel firstprivate(res) firstprivate(a,b)
#pragma omp master
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a)
x = a;
#pragma omp task shared(y) firstprivate(b)
y = b;
#pragma omp taskwait
res = x+y;

}
printf(“res: %d\n”,res);

• Which is the value of res
printed?

Hands-on:
Parallel Correctness

✓

Race condition!

shared(res)

76

int a = 2, b=2, res;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master
{

int x, y, factor=0;
#pragma omp task shared(x,factor) firstprivate(a)
{

x = a;
if(cond(x)) factor++;

}
#pragma omp task shared(y) firstprivate(b)
y = b;

factor++;
#pragma omp taskwait
res = (x+y)*factor;

}
printf(“res: %d\n”,res);

• Is this code functionally correct?

Hands-on:
Parallel Correctness

Race condition!

77

int a = 2, b=1, res;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master
{

int x, y,factor=0;
#pragma omp task shared(x,factor) firstprivate(a)
{

x = a*a;
if(cond(x))

#pragma omp critical(factor_update)
factor++;

}
#pragma omp task shared(y) firstprivate(b)
y = b*b;

#pragma omp critical(factor_update)
{

factor++;
#pragma omp taskwait
res = (x+y)*factor;

}
}
printf(“res: %d\n”,res);

• What is wrong with this code?

Hands-on:
Parallel Correctness

Deadlock!

78

int a = 2, b=1, res;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master
{

int x, y,factor=0;
#pragma omp task shared(x,factor) firstprivate(a)
{

x = a*a;
if(cond(x))

#pragma omp critical(factor_update)
factor++;

}
#pragma omp task shared(y) firstprivate(b)
y = b*b;

#pragma omp critical(factor_update)
factor++;

#pragma omp taskwait
res = (x+y)*factor;

}
printf(“res: %d\n”,res);

Hands-on:
Parallel Correctness

✓
• The usage of critical mutex is

not recommended!
• If needed, better use atomic

Task Dependency Graph (TDG)

79ACACES 2021, Fiuggi, Eduardo Quiñones

#pragma omp parallel
#pragma omp master
{

int x,y;
#pragma omp task depend(out:x,y) shared(x,y) // T1
{ f1(&x,&y); }
#pragma omp task depend(in:x) firstprivate(x) // T2
{ f2(x); }
#pragma omp task depend(in:y) firstprivate(y) // T3
{ f3(y); }

}

1 Vargas, et.al. A Lightweight OpenMP Run-time for Embedded Systems, in ASP-DAC 2016;
Vargas, et.al., OpenMP and Timing Predictability: A Possible Union?, in DATE 2015

A representation of the parallel nature of a
given OpenMP region, extracted by means of
compilation and runtime methods 1
• Includes all the information for functional and

non-funcional correctness
– Parallel units and synchronization

dependencies
– Liveness analysis of variables and data-

sharings involved in the parallel execution
• Independent from the targeted parallel

platform (but can include HW dependent
information)
– Execution characterisation of parallel units

(e.g., time, energy, memory behaviour)

T1

T2 T3
yx

mas
ter

firstprivate(y)firstprivate(x)

shared(x,y)
live vars: x,y

live vars: ylive vars: x

task creation

Task Dependency Graph (TDG)

80ACACES 2021, Fiuggi, Eduardo Quiñones

Fine-grain synchronization and data movement
to accelerators

Liveness analysis for race condition detection

Execution characterisation of tasks on a given
HW (platform-dependent)

1 Vargas, et.al. A Lightweight OpenMP Run-time for Embedded Systems, in ASP-DAC 2016;
Vargas, et.al., OpenMP and Timing Predictability: A Possible Union?, in DATE 2015

T1

T2 T3
yx

mas
ter

firstprivate(y)firstprivate(x)

shared(x,y)
live vars: x,y

live vars: ylive vars: x

task creation

A representation of the parallel nature of a
given OpenMP region, extracted by means of
compilation and runtime methods 1
• Includes all the information for functional and

non-funcional correctness
– Parallel units and synchronization

dependencies
– Liveness analysis of variables and data-

sharings involved in the parallel execution
• Independent from the targeted parallel

platform (but can include HW dependent
information)
– Execution characterisation of parallel units

(e.g., time, energy, memory behaviour)

TDG and Functional Correctness1

81ACACES 2021, Fiuggi, Eduardo Quiñones

T2T1

shared(res)
firstprivate(a,b)

mas
ter

shared(x)
firstprivate(a)

task creation
int a = 2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a) // T1
x = a;
#pragma omp task shared(y) firstprivate(b) // T2
y = b;
#pragma omp taskwait
res = x+y; // B1

}
printf(“res: %d\n”,res);

task
wait

B1

shared(y)
firstprivate(b)

live vars: x live vars:y

live vars: res,x,y

live vars: res

live vars: y,blive vars: x,a

1 Royuela, Duran, Liao, Quinlan, Auto-scoping for OpenMP tasks, in IWOMP 2012
2 Lin, Static nonconcurrency analysis of openmp programs, in IWOMP 2008

82ACACES 2021, Fiuggi, Eduardo Quiñones

TDG and Functional Correctness

T2T1

shared(res)
firstprivate(a,b)

mas
ter task creation

int a = 2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a) // T1
x = a;
#pragma omp task shared(y) firstprivate(b) // T2
y = b;
#pragma omp taskwait
res = x+y; // B1

}
printf(“res: %d\n”,res);

B1

live vars: x live vars:y

live vars: res,x,y

live vars: res

x and y are write/read without a predefined order

shared(x)
firstprivate(a)

shared(y)
firstprivate(b)

live vars: y,blive vars: x,a

83ACACES 2021, Fiuggi, Eduardo Quiñones

TDG and Functional Correctness

T2T1

firstprivate(res)
firstprivate(a,b)

mas
ter task creation

int a = 2, b=2, res=0;
#pragma omp parallel firstprivate(res) firstprivate(a,b)
#pragma omp master
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a) // T1
x = a;
#pragma omp task shared(y) firstprivate(b) // T2
y = b;
#pragma omp taskwait
res = x+y; // B1

}
printf(“res: %d\n”,res);

task
wait

B1

live vars: x live vars:y

live vars: res,x,y

live vars: resThe liveness analysis and the data-
sharing of res does not match!

shared(x)
firstprivate(a)

shared(y)
firstprivate(b)

live vars: y,blive vars: x,a

84ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: TDG

#define N 2

int a[N], b[N];
#pragma omp parallel shared(a,b)
#pragma omp master
{

for(int i=0; i<N; i++) {
// T1
#pragma omp task shared(a) firstprivate(i) \

depend(out:a[i])
a[i] = init(i);
if(!(i%2))

// T2
#pragma omp task shared(a,b) firstprivate(i) \

depend(in:a[i], out:b[i])
b[i] = compute(a[i]); {

}
#pragma omp taskwait

}

• How does the TDG look like?

T1.2T1.1

shared(a,b)

mas
ter

task
wait

shared(a)
firstprivate(i)

live vars: a[0]

live vars: a[1],b[1]

live vars: a,b

T2.1
shared(a,b)
firstprivate(i)

Live vars: a[1]

live vars: b[1]

Live vars: a[0],i=0; a[1],i=1

Examples of OpenMP-TDGs

85ACACES 2021, Fiuggi, Eduardo Quiñones

3D Path Planning
(avionics)

Infra-red sensor pre-
processing (space)

Pedestrian detector
(automotive)

Cholesky Factorization
(HPC)

Examples of OpenMP-TDGs

86ACACES 2021, Fiuggi, Eduardo Quiñones
389524

379924

370324

360724

351124

341524

331924

322324

312724

303124

293524

283924

274324

264724

255124

245524

235924

226324

216724

207124

197524

187924

178324

168724

159124

149524

139924

130324

120724

111124

101524

91924

82324

72724

63124

53524

43924

34324

24724

389284

379684

370084

360484

350884

341284

331684

322084

312484

302884

293284

283684

274084

264484

254884

245284

235684

226084

216484

206884

197284

187684

178084

168484

158884

149284

139684

130084

120484

110884

101284

91684

82084

72484

62884

53284

43684

34084

24484

389044

379444

369844

360244

350644

341044

331444

321844

312244

302644

293044

283444

273844

264244

254644

245044

235444

225844

216244

206644

197044

187444

177844

168244

158644

149044

139444

129844

120244

110644

101044

91444

81844

72244

62644

53044

43444

33844

24244

388804

379204

369604

360004

350404

340804

331204

321604

312004

302404

292804

283204

273604

264004

254404

244804

235204

225604

216004

206404

196804

187204

177604

168004

158404

148804

139204

129604

120004

110404

100804

91204

81604

72004

62404

52804

43204

33604

24004

388564

378964

369364

359764

350164

340564

330964

321364

311764

302164

292564

282964

273364

263764

254164

244564

234964

225364

215764

206164

196564

186964

177364

167764

158164

148564

138964

129364

119764

110164

100564

90964

81364

71764

62164

52564

42964

33364

23764

388324

378724

369124

359524

349924

340324

330724

321124

311524

301924

292324

282724

273124

263524

253924

244324

234724

225124

215524

205924

196324

186724

177124

167524

157924

148324

138724

129124

119524

109924

100324

90724

81124

71524

61924

52324

42724

33124

23524

388084

378484

368884

359284

349684

340084

330484

320884

311284

301684

292084

282484

272884

263284

253684

244084

234484

224884

215284

205684

196084

186484

176884

167284

157684

148084

138484

128884

119284

109684

100084

90484

80884

71284

61684

52084

42484

32884

23284

387844

378244

368644

359044

349444

339844

330244

320644

311044

301444

291844

282244

272644

263044

253444

243844

234244

224644

215044

205444

195844

186244

176644

167044

157444

147844

138244

128644

119044

109444

99844

90244

80644

71044

61444

51844

42244

32644

23044

387604

378004

368404

358804

349204

339604

330004

320404

310804

301204

291604

282004

272404

262804

253204

243604

234004

224404

214804

205204

195604

186004

176404

166804

157204

147604

138004

128404

118804

109204

99604

90004

80404

70804

61204

51604

42004

32404

22804

387364

377764

368164

358564

348964

339364

329764

320164

310564

300964

291364

281764

272164

262564

252964

243364

233764

224164

214564

204964

195364

185764

176164

166564

156964

147364

137764

128164

118564

108964

99364

89764

80164

70564

60964

51364

41764

32164

22564

387124

377524

367924

358324

348724

339124

329524

319924

310324

300724

291124

281524

271924

262324

252724

243124

233524

223924

214324

204724

195124

185524

175924

166324

156724

147124

137524

127924

118324

108724

99124

89524

79924

70324

60724

51124

41524

31924

22324

386884

377284

367684

358084

348484

338884

329284

319684

310084

300484

290884

281284

271684

262084

252484

242884

233284

223684

214084

204484

194884

185284

175684

166084

156484

146884

137284

127684

118084

108484

98884

89284

79684

70084

60484

50884

41284

31684

22084

386644

377044

367444

357844

348244

338644

329044

319444

309844

300244

290644

281044

271444

261844

252244

242644

233044

223444

213844

204244

194644

185044

175444

165844

156244

146644

137044

127444

117844

108244

98644

89044

79444

69844

60244

50644

41044

31444

21844

386404

376804

367204

357604

348004

338404

328804

319204

309604

300004

290404

280804

271204

261604

252004

242404

232804

223204

213604

204004

194404

184804

175204

165604

156004

146404

136804

127204

117604

108004

98404

88804

79204

69604

60004

50404

40804

31204

21604

386164

376564

366964

357364

347764

338164

328564

318964

309364

299764

290164

280564

270964

261364

251764

242164

232564

222964

213364

203764

194164

184564

174964

165364

155764

146164

136564

126964

117364

107764

98164

88564

78964

69364

59764

50164

40564

30964

21364

385924

376324

366724

357124

347524

337924

328324

318724

309124

299524

289924

280324

270724

261124

251524

241924

232324

222724

213124

203524

193924

184324

174724

165124

155524

145924

136324

126724

117124

107524

97924

88324

78724

69124

59524

49924

40324

30724

21124

385684

376084

366484

356884

347284

337684

328084

318484

308884

299284

289684

280084

270484

260884

251284

241684

232084

222484

212884

203284

193684

184084

174484

164884

155284

145684

136084

126484

116884

107284

97684

88084

78484

68884

59284

49684

40084

30484

20884

385444

375844

366244

356644

347044

337444

327844

318244

308644

299044

289444

279844

270244

260644

251044

241444

231844

222244

212644

203044

193444

183844

174244

164644

155044

145444

135844

126244

116644

107044

97444

87844

78244

68644

59044

49444

39844

30244

20644

385204

375604

366004

356404

346804

337204

327604

318004

308404

298804

289204

279604

270004

260404

250804

241204

231604

222004

212404

202804

193204

183604

174004

164404

154804

145204

135604

126004

116404

106804

97204

87604

78004

68404

58804

49204

39604

30004

20404

384964

375364

365764

356164

346564

336964

327364

317764

308164

298564

288964

279364

269764

260164

250564

240964

231364

221764

212164

202564

192964

183364

173764

164164

154564

144964

135364

125764

116164

106564

96964

87364

77764

68164

58564

48964

39364

29764

20164

384724

375124

365524

355924

346324

336724

327124

317524

307924

298324

288724

279124

269524

259924

250324

240724

231124

221524

211924

202324

192724

183124

173524

163924

154324

144724

135124

125524

115924

106324

96724

87124

77524

67924

58324

48724

39124

29524

19924

384484

374884

365284

355684

346084

336484

326884

317284

307684

298084

288484

278884

269284

259684

250084

240484

230884

221284

211684

202084

192484

182884

173284

163684

154084

144484

134884

125284

115684

106084

96484

86884

77284

67684

58084

48484

38884

29284

19684

384243

374643

365043

355443

345843

336243

326643

317043

307443

297843

288243

278643

269043

259443

249843

240243

230643

221043

211443

201843

192243

182643

173043

163443

153843

144243

134643

125043

115443

105843

96243

86643

77043

67443

57843

48243

38643

29043

19443

15122

14882

14642

14402

14162

13922

13682

13442

13202

12962

12722

12482

12242

12002

11762

11522

11282

11042

10802

10562

10322

10082

9841

3D Path Planning
(avionics)

Infra-red sensor pre-
processing (space)

Pedestrian detector
(automotive)

Cholesky Factorization
(HPC)

Resiliency

87ACACES 2021, Fiuggi, Eduardo Quiñones

• The OpenMP specification does not
include error handling mechanisms to
safely recover from errors
– Relies on those provided by the base

programming language, e.g.,
exceptions in case of C++

• OpenMP includes directives (cancel
and cancellation point) to
cancel the parallel execution of
parallel, sections, for and
taskgroup

std::exception *ex = NULL;
#pragma omp parallel shared(ex)
{

#pragma omp for
for (int i=0;i<N;i++){

try {
iteration();

}
catch (std::exception *e) {

#pragma omp atomic write
ex = e;
#pragma omp cancel for

}
}
if (ex)

#pragma omp cancel parallel
}
if (ex)

handle_exception();

Time predictability
• The timing behaviour of parallel execution depends on

the allocation of parallel units to computing resources
1. The parallel structure of the application

• The Task Dependency Graph (TDG)

2. The scheduler(s) responsible of allocating parallel units
(OpenMP tasks) to computing resources (cores/acceleration
devices)
• The execution profile of the parallel units into the computing

resources

88ACACES 2021, Fiuggi, Eduardo Quiñones

Time predictability: Task Scheduler

• The OpenMP framework
includes multiple levels of
scheduling that dificults the
time predictability

89ACACES 2021, Fiuggi, Eduardo Quiñones

Team of OpenMP Threads
(#pragma omp parallel num_threads)

OpenMP Task
(#pragma omp task)

OS Threads
(pool of threads)

HW Threads/HW Cores

Ready tasks queue

scheduling decisions

Time predictability: Task Scheduler
• The OpenMP Thread Affinity

allows fixing the OpenMP
threads of a team to the
available HW threads on a
device (places)
– OMP_PLACES
– OMP_PROC_BIND

• The parallel execution is only
managed by the OpenMP task
to OpenMP thread scheduler
increasing time predictability

90ACACES 2021, Fiuggi, Eduardo Quiñones

Team of OpenMP Threads
(#pragma omp parallel num_threads)

OpenMP Task
(#pragma omp task)

OS Threads
(pool of threads)

HW Threads/HW Cores

Ready tasks queue

scheduling decisions

The OpenMP Scheduler
• Given two tasks with different priorities, there exist

three preemption strategies

91ACACES 2021, Fiuggi, Eduardo Quiñones

HP τ1

LP	τ2

Fully	preemp*ve	scheduling	

HP	τ1

LP	τ2

Non-preemp)ve	scheduling	

HP	τ1

LP	τ2

Limited	preemp*on	
(coopera*ve)	scheduling		

The OpenMP Scheduler
• The OpenMP tasking execution model defines a limited preemption

scheduling strategy
– OpenMP task-based program can only be preempted at predefined points of

the execution (a.k.a. preemption points or task scheduling points)
• Task creation and completion, taskwait, taskgroup
• Tasks cannot be preempted at any other point and must execute until completion

– Tasks includes a priority clause that can be used by the scheduler

• The actual implementation of the scheduler included in the runtime
is implementation-defined

92ACACES 2021, Fiuggi, Eduardo Quiñones

The OpenMP Task Scheduler

93ACACES 2021, Fiuggi, Eduardo Quiñones

#pragma omp parallel num_threads(1)
#pragma omp master
{

for(int i=0;i<2;i++) {
#pragma omp task priority(3) // t1
{ … }
#pragma omp task priority(2) // t2
{ … }
#pragma omp task priority(1) // t3
{ … }

}
}

t3 t3 t2 t2 t1 t1

t1 t2 t3

core 0

- priority

+ priority

t1 t2 t3

TDG (order of creation):

(a possible) order of execution:

Time Predictability: TDG + Scheduler
• The execution time of an OpenMP-

TDG is determined by:
1. The execution of OpenMP tasks

within the critical path
2. Interferences of the rest of OpenMP

tasks on the critical path
3. Interferences on HW/SW resources

due to the simultaneous execution of
OpenMP tasks
• Not addressed in this course!

94ACACES 2021, Fiuggi, Eduardo Quiñones

t1:5

t3:3

t2:3

t6:2

t7:2

t5:4

t4:1

t8:1

critical path
interference

tasks

Time Predictability: TDG + Scheduler

95ACACES 2021, Fiuggi, Eduardo Quiñones

t1 t3 t5 t8
t2 t7 t6 t4

t1 t3 t6 t5 t8
t2 t7 t4

core 0

core 1

core 0

core 1

Shortest possible execution time
(critical path)

t1:5

t3:3

t2:3

t6:2

t7:2

t5:4

t4:1

t8:1

critical pathinterference
tasks

Interefence

Execution time increment
due to intereference

Schedulability Analysis
• Determines a response time upper bound (Rub) of an

OpenMP-TDG under a work-conserving scheduler1

– An OpenMP application is schedulable if Rub ≤ Deadline (D)

𝑅!" = 𝑙𝑒𝑛 𝐺 +
1
𝑚 (𝑣𝑜𝑙 𝐺 − 𝑙𝑒𝑛(𝐺)) ≤ 𝐷

Interferences of the
remaining work

Divided among
processing units (cores)

Critical path
• G: TDG annotated with execution

times of tasks
• len(G): critical path
• vol(G): sequential execution time
• D: deadline

1 A. Melani, et.al., A static scheduling approach to enable safety-critical OpenMP applications, In ASP-DAC 2017

t1:5

t3:3

t2:3

t6:2

t7:2

t5:4

t4:1

t8:1

Rub of Real OpenMP applications

97ACACES 2021, Fiuggi, Eduardo Quiñones

Pre-processing sampling
Pedestrian detector Cholesky factorization

• Executed using 16-cores only of the Intel® Xeon Platinum
1. Improved performance parallel vs. sequential
2. Average vs. max. observed execution times
3. Maximum observed time over Rub

OpenMP tasks (TDG nodes)# OpenMP tasks (TDG nodes)# OpenMP tasks (TDG nodes)

Functions included within the
task construct

Understanding Parallel Execution
• Is schedulability analysis sufficient to understand parallel execution? NO!

– No information about the parallel execution efficiency from a programming perspective
– No information about the usage of computing resources

ACACES 2021, Fiuggi, Eduardo Quiñones

Pedestrian detector

OpenMP tasks (TDG nodes)

98

Understanding Parallel Execution

99ACACES 2021, Fiuggi, Eduardo Quiñones

Based on how data is collected Based on how data is stored
• Instrumentation:

- Captures information based on events
(TDG events!)

- Requires modification of the application
manual or automatic

- Reports exact data

• Sampling:
- Captures information periodically
- Does not require modifying the

application
- Reports relative data

• Tracing:

- Stores information in a timeline basis

- Holds exact data

- A profile can be derived from the trace

• Profiling:

- Stores information in counters

- Holds summarized data

- A trace cannot be derived from a profile

A Multispectal Imaging of the Parallel Execution

100ACACES 2021, Fiuggi, Eduardo Quiñones

Reality

Different representations of the
same reality containing different
information

Tools for
observing the

reality

A Multispectal Imaging of the Parallel Execution

101ACACES 2021, Fiuggi, Eduardo Quiñones

Extrae

+Reality

Sequence of time-
stamped events (trace)

Tools for
observing the

reality

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW
func

HW
func

HW
func

Different representations of the
same reality containing different
information

Understanding OpenMP: Extrae1

• A dynamic instrumentation package to trace parallel programs
• Capable of automatically capturing the activity of the parallel runtimes

– No need to access the source code, recompiling, relinking, or having prior
knowledge of application internals structure

• Allows reasoning about the execution behaviour of the parallel
programing model
– OpenMP support (other supported programming models are MPI, pthread,

etc.)

102ACACES 2021, Fiuggi, Eduardo Quiñones

1 Extrae means Extract in spanish. Available here: https://tools.bsc.es/extrae

A Multispectal Imaging of the Parallel Execution:
Extrae + Paraver1

103ACACES 2021, Fiuggi, Eduardo Quiñones

for (int i=0; i<3; i++) parallel
regions

task
creation

task
execution

thread id

Functions
included within

the task
construct

1 Paraver means for seeing in spanish. Available here: https://tools.bsc.es/paraver

A Multispectal Imaging of the Parallel Execution:
Extrae + Paraver

104ACACES 2021, Fiuggi, Eduardo Quiñones

Task
execution

IPC
(Instructions

per Cycle)

L1 miss
ratio

Range:
0.1 to 2.0

Range:
1% to 15%

Parallel functions view
(Parallel programming level)

Hardware counters
information view
(computing resources
usage level)

Supporting multiple CPS functionalities in OpenMP

• CPS are composed of multiple functionalities (a.k.a. real-time tasks) 𝝉𝒌
(TDG 𝑮𝒌), each characterized by a period (T), a deadline (D) and a priority

• The limited preemption strategy and the priority clause supported by
OpenMP allows to analyse CPS with multiple functionalities implemented
with OpenMP

105ACACES 2021, Fiuggi, Eduardo Quiñones

6

2

5
3

2

!!	
3

2

1
5

!!

5

2

3

2

1

4

1
0 !!

HP	τ1

LP	τ2

Limited	preemp*on	
(coopera*ve)	scheduling		

Supporting multiple OpenMP functionalities in CPS

106ACACES 2021, Fiuggi, Eduardo Quiñones

Task
Scheduling
Points

𝝉𝟐 𝝉𝟐

Lower priority task
interference

Higher priority task
interference

𝝉𝟏

𝝉𝟑 𝝉𝟑

Period

+ priority

- priority

Task under analysis

6

2

5
3

2

!!	
3

2

1
5

!!

5

2

3

2

1

4

1
0 !!

Supporting multiple OpenMP functionalities in CPS

107ACACES 2021, Fiuggi, Eduardo Quiñones

Task
Scheduling
Points

𝝉𝟐 𝝉𝟐

Lower priority task
interference

Higher priority task
interference

𝝉𝟏

𝝉𝟑 𝝉𝟑

Period

6

2

5
3

2

!!	
3

2

1
5

!!

5

2

3

2

1

4

1
0 !!

#pragma omp parallel
#pragma omp single nowait
{
while (1) {
if (get_current_clock_t() == period_1)
#pragma omp task priority(1)
{ 𝝉𝟏;
#pragma omp taskwait

}
if (get_current_clock_t() == period_2)
#pragma omp task priority(2)
{ 𝝉𝟐;
#pragma omp taskwait

}
if (get_current_clock_t() == period_3)
#pragma omp task priority(3)
{ 𝝉𝟑;
#pragma omp taskwait

}
}

}

Schedulability Analysis

108ACACES 2021, Fiuggi, Eduardo Quiñones

𝑅"#$ = 𝑙𝑒𝑛 𝐺" +
1
𝑚 𝑣𝑜𝑙 𝐺" − 𝑙𝑒𝑛 𝐺" +

1
𝑚 𝐼"

%& + 𝐼"
'& ≤ 𝐷"

Critical path
Intra-task interference

(self-interferences)

Higher priority tasks
interference

Lower priority tasks
interference

!! !!

!"

!# !#

6

2

5
3

2

!!	
3

2

1
5

!!

5

2

3

2

1

4

1
0 !!

#pragma omp parallel
#pragma omp single nowait
{
while (1) {
if (get_current_clock_t() == period_1)

#pragma omp task priority(1)
{ 𝝉𝟏;

#pragma omp taskwait
}

if (get_current_clock_t() == period_2)
#pragma omp task priority(2)
{ 𝝉𝟐;

#pragma omp taskwait
}

if (get_current_clock_t() == period_3)
#pragma omp task priority(3)
{ 𝝉𝟑;

#pragma omp taskwait
}

}
}

1 M. A. Serrano, et.al., An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-based Global Fixed Priority Scheduling,
In ISORC 2017

(1)

Schedulability Analysis
CPS composed of three concurrently OpenMP functionalities

109ACACES 2021, Fiuggi, Eduardo Quiñones

Functionality 𝝉𝒊 # nodes P 𝑻𝒌 (ms) 𝑫𝒌 (ms)

Pre-processing sampling 𝜏& 193 1 410 410

Person detector 𝜏' 1299 2 780 780

Cholesky factorization 𝜏(819 3 400 400

109

Pre-processing sampling
(highest priority)

Pedestrian detector
(medium priority)

Cholesky factorization
(lowest priority)

(24-core Intel Xeon)

CPS and OpenMP

110ACACES 2021, Fiuggi, Eduardo Quiñones

from a functional and timing perspective”

Cyber-Physical System (CPS)
• So, can we now

develop the most
advanced CPS
functionalities with
OpenMP?...

• … Not Really

Model Driven Engineering and OpenMP

111ACACES 2021, Fiuggi, Eduardo Quiñones

Bridge
the gap 1. Compiler and run-time parallel frameworks that

guarantee system correctness and exploit the
performance capabilities of parallel architectures

2. Synthesis methods for an efficient generation of
parallel source code, while keeping non-functional
and composability guarantees

Sensors ActuatorsMDE
(e.g. CAPELLA,

AMALTHEA,
AUTOSAR)

Logic
Controller

Run-time
parallel

frameworks

Parallel
Programming

Models
(e.g. OpenMP,

OpenCL,
CUDA, COMPSs)

Parallel
Execution

Model

Parallel Units

Parallel Untits

Parallel Units

1. Construction of complex systems
2. Formal verification of functional and non-functional

requirements with composability features
3. Correct-by-construction paradigm by means of

code generation

✓
?

AMALTHEA/AUTOSAR and OpenMP
• Automotive MDE highly inspired in

AUTOSAR developed by Bosch
– Defacto standard for the development

of automotive SW
– Used by most of OEM and TIER1 and

TIER2 automotive companies

• Multiple abstraction layers to
define CPS SW components
– AMALTHEA task
– Runnable
– Stimulus

• Compatibility between the
AMALTHEA and OpenMP execution
models

112ACACES 2021, Fiuggi, Eduardo Quiñones

Process/Task Activity
Graph

Stimulus

[0..*]
[0..*]

Runnable

Event

Runnable Sequencing
Constraint

Runnable
Group

[2..*]

[1..*]

Event
Chain

[1..1] stim
ulus

[1..1] response

[1..*]

Units of work
Ordering

Inside a runnable:
Transparent to AMALTHEA

AMALTHEA/AUTOSAR and OpenMP

113ACACES 2021, Fiuggi, Eduardo Quiñones

#pragma omp parallel
#pragma omp single

#pragma omp task priority(x)
{

#pragma omp task depend(out: Image)
run_read_image ("") ;
#pragma omp task depend(inout:Image)
run_convert_image ("") ;
#pragma omp target depend(in:Image) \

depend(out:ResultsA)
run_analysisA ("");
#pragma omp target depend(in:Image) \

depend(out:ResultsB)
run_analysisB ("");
#pragma omp task depend(in:ResultsA,ResultsB)
un_merge_results ("") ;
#pragma omp taskwait

}

AMALTHEA DSML Source-code transformation 1

2

3 4

5

AMALTHEA and OpenMP

114ACACES 2021, Fiuggi, Eduardo Quiñones

Setup Speedup

ODAS
2-cores 1.88

4-cores 2.62

WATERS 4-cores + GPU 6.21

NVIDIA Jetson
TX2 board
with a GPU, a
4-core ARM
CPU

ODAS

WATERS

ampere.euproject.eu

Conclusions
• The TDG (extracted by means of compiler and/or runtime

methods) includes all the information needed to
– Reason about the timing behaviour of OpenMP programs and so

derive timing guarantees
• The use of tracing tools (e.g., Extrae and Paraver) are needed to incorporate

the required information and further understand the execution behaviour
• The OpenMP execution model implements a limited preemption scheduling

strategy upon which schedulability analysis can be built
– Implement compiler mechanisms to guarantee functional correctness

by detecting (and correcting) race conditions
• OpenMP is compatible with the AMALTHEA DSML, facilitating

its usage in the automotive domain

115ACACES 2021, Fiuggi, Eduardo Quiñones

Challenges we are addressing…
1. Better characterisation of the parallel execution

– Contention on shared resources due to parallel execution
– Overhead introduced by the run-time mechanism
– Compiler and run-time mechanism to ensure no data-races and deadlocks

2. Modification of the OpenMP standard to better capture
functional/non-functional requirements
– Error handling mechanisms to safely recover the parallel execution from

errors
– Event-driven execution missing

3. Interoperability with different MDE

116ACACES 2021, Fiuggi, Eduardo Quiñones

Literature of OpenMP on CPS
• openmp.org
Analysis of the overall OpenMP specification
1. M. Serrano, S. Royuela and E. Quiñones. Towards an OpenMP Specification for Critical Real-time Systems. In IWOMP 2018
2. R. Vargas, E. Quinones and A. Marongiu, OpenMP and Timing Predictability: A Possible Union?, In DATE 2015

Schedulability analysis for homogeneous computing
3. M. A. Serrano, A. Melani, S. Kehr, M. Bertogna, E. Quiñones, An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-based

Global Fixed Priority Scheduling, In ISORC 2017
4. A. Melani, M. A. Serrano, M. Bertogna, I. Cerutti, E. Quiñones, G. Buttazzo, A static scheduling approach to enable safety-critical OpenMP

applications, In ASP-DAC 2017
5. M. A. Serrano, Alessandra Melani, Marko Bertogna and Eduardo Quiñones, Response-Time Analysis of DAG Tasks under Fixed Priority Scheduling

with Limited Preemptions, In DATE, Dresden (Germany), March 2016
6. Roberto E. Vargas, Sara Royuela, Maria A. Serrano, Xavier Martorell, Eduardo Quiñones, A Lightweight OpenMP4 Run-time for Embedded

Systems, In ASP-DAC 2016
7. Maria A. Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu, Marko Bertogna and Eduardo Quiñones, Timing Characterization of

OpenMP4 Tasking Model, In CASES 2015
Schedulability analysis for heterogeneous computing
8. M. A. Serrano and E. Quiñones, Response-Time Analysis of DAG Tasks Supporting Heterogeneous Computing, in DAC 2018

Functional safety
9. S. Royuela, L.M. Pinho and E. Quinones, Converging Safety and High-performance Domains: Integrating OpenMP into Ada, In DATE 2018
10. S. Royuela, A. Duran, M. A. Serrano, E. Quiñones, A functional safety OpenMP for critical real-time embedded systems, In IWOMP 2017
11. S. Royuela, X. Martorell, E. Quinones, and L. M. Pinho, OpenMP Tasking Model for Ada: Safety and Correctness, In Ada-Europe 2017

117ACACES 2021, Fiuggi, Eduardo Quiñones

ACACES 2021, Fiuggi

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-

Physical Computing Domains

Lesson 4: Distribution across the
compute continuum: COMPSs

Eduardo Quiñones
{eduardo.quinones@bsc.es}

Outline
• COMPSs framework

– Execution model and memory model
– Task model

• Reliability and resiliency
• Time predictability

– Static allocation heuristics
• A real CPS: a smart mobility use-

case
• Conclusions

119ACACES 2021, Fiuggi, Eduardo Quiñones

Compute Continuum

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

Tram StopStreetlight

[ICT-01-2019 AMPERE] - page 12 of 90

The block diagram of the ODAS use-case is depicted in Figure
4. The use-case incorporates two main subsystems: the Sensor
Data Fusion (SDF) and the AI Analytics (AI) components.
The SDF component will be in charge of collecting a large mass
of raw data from the multiple advanced sensors installed in tram
vehicle, i.e., optical and thermal cameras, radars and LiDARs
(light detection and ranging). Cameras are a very good tool for
classifying objects (rails, signs vehicle, people...) through deep
learning technologies; LiDAR and radar are good at estimating
the position of objects around the vehicle. Each of these sensors
has advantages and disadvantages depending on the operational
scenarios, environmental and lighting conditions. For instance,
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the
tramway infrastructure and extract knowledge that will be displayed to the tram driver.

 The two components will be distributed and executed in a COTS parallel
and heterogeneous platform installed on-board tram vehicles, featuring
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation.
Moreover, the platform will host multiple standard hardware interfaces to
ease the integration of the system into a wide range of operation conditions.
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an
urban environment with traffic mixed with cars and pedestrians (see Figure 5).

AMPERE Use Case Key Performance Indicators (KPIs)
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases.

Use case KPI Measure

Intelligent Pre-
dictive Cruise
Control (PCC)

(BOS)

Satisfy the high computation demands of PCC algorithms while
guaranteeing the safety properties of the powertrain control and
ACC functionalities.

High system utilization (>
90%) with provable safety
properties

Maintain the functional properties of the PCC when integrating
further synthetic applications, to demonstrate the compositional
integration capabilities of the AMPERE ecosystem.

Maintain exactly the same
functional properties

Providing a reduced development effort for integrating new
functionalities in an existing system, by coupling the AMPERE
ecosystem with existing automotive standards and tools.

30% reduction of develop-
ment efforts

Obstacle Detec-
tion and

Avoidance Sys-
tem (ODAS)
(THALIT)

Reduce the development and integration costs of the ADAS
functional critical software modules by employing the
AMPERE ecosystem starting from the system design phase.

< 20% of development
and integration costs

Improve the object detection capability and reduce the false
alarms rate in critical environmental conditions (fog, rain, at
night) by combining AMPERE with existing on-board systems.

- > 20% objects detected
- < 15% False alarms rate

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.

> 20% reduction in com-
puting energy needs

Figure 5: Tramway at Florence

√
CAMERA

RADAR

Pre-processing
Units

Pre-processing
Units

Pre-processing
Units

Sensor
Data

Fusion

AI
Analytics

GPUs
Heterogenous Platform

(CPU+GPU+FPGA)

Figure 4. Block diagram of the ODAS use-case.

Connected Car

Wifi
Eth

Wifi
LTE
5G

Eth

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking

COMPSs1
• Programming distribute framework highly inspired in the OpenMP tasking

model
• Supports Python, Java and C++

– For Python and C++, the code is annotated to describe asynchronous procedures
(task) and the data dependencies among them

– For Java, the model does not require to use any special API call, pragma or
construct in the application

• Agnostic of the underlying distributed computing infrastructure
– Programs do not include any infrastructure details, making applications portable

• The memory and file system space is abstracted, giving the illusion of a
single memory space and file system
– The runtime takes care of all the necessary data transfers.

120ACACES 2021, Fiuggi, Eduardo Quiñones
1 http://compss.bsc.es

Execution Model: Master-Worker
• The COMPSs runtime is composed of

– Master, responsible of the execution of
the main program and the distribution of
the asynchronous tasks, honoring task
data dependencies

– Worker, responsible of the execution of
the COMPSs tasks on the different
computing resources as described in the
resource.xml file, and the data transfer
among workers

121ACACES 2021, Fiuggi, Eduardo Quiñones

N
ative

Linux
cloud

containers

re
so

ur
ce

s.
xm

l

• The master maintains the memory consistency and distributes the
asynchronous tasks across the workers

Memory Model and Parallel distribution:
Task Model

122ACACES 2021, Fiuggi, Eduardo Quiñones

@task(x=OUT)
def f1(i):

…
return x

@task(x=IN)
def f2(x):

…
def main():

x=f1(i)
f2(x)

f1

f2

Resource 2

1. Data renaming of
WaR and WaW

2. TDG generation

3. Task
Scheduling

4. Data
Transfer

Resource 3

f1

f2

x

Master
Workers

(resource.xml)

Resource 1

ma
in

i N
ative

Linux
cloud

Native
Linux

cloud
containers

ma
in

f1

f2

Memory Model and Parallel distribution:
Task Model
• The COMPSs tasking model is similar to

the OpenMP tasking model…
– Oblivious of the underlying distributed physical

layout
– Structured and unstructured data- and task-

parallelism
– Representative construct: @task (python

decorator)
– Coarse- and fine-grain synchronization:

compss_wait_on (COMPSs runtime call)
and IN and OUT data dependencies (python
decorator)

123ACACES 2021, Fiuggi, Eduardo Quiñones

worker

master

f1 f1

@task(x=OUT)
def f1(i):

return i*2

@task(x=IN)
def f2(x):

return x+2
def main():

for i in [1..2]
x=f1(i)
y=f2(x)
compss_wait_on(y)

worker f2 f2

main main main

compss_wait_on compss_wait_on

Memory Model and Parallel distribution:
Task Model

• … but not the same!
– Synchronization directives implies data

transfer between workers and master and
workers
• Input/output data is serialized/deserialized and

stored in disk

– There are not shared variables
– COMPSs tasks are “stateless”

• State across multiple executions of the same task
must be included as an INOUT dependency

124ACACES 2021, Fiuggi, Eduardo Quiñones

worker

master

f1 f1

x=2 x=4

i=1 i=2

@task(x=OUT)
def f1(i):

return i*2

@task(x=IN)
def f2(x):

return x+2
def main():

for i in [1..2]
x=f1(i)
y=f2(x)
compss_wait_on(y)

worker f2 f2

y=4 y=6

main main main

compss_wait_on compss_wait_on

125ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: COMPSs TDG
@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN)
def f2(i):

y=i+2
return y

@task(y=IN)
def f3(x,y):

print(x+y)
def main():

x=f1(1)
y=f2(x)
compss_wait_on(y)
f3(x,y)

@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN,y=OUT)
def f2(i):

y=i+2
return y

@task(y=IN,x=IN)
def f3(x,y):

print(x+y)
def main():

x=f1(1)
y=f2(x)
f3(x,y)

• Are these two source-codes
equivalent from a functional
and parallel perpective?

• YES and NO

126ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: COMPSs TDG

ma
in

f1

f2

f3

wait

@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN)
def f2(i):

y=i+2
return y

@task(y=IN)
def f3(x,y):

print(x+y)

def main():
x=f1(1)
y=f2(x)
compss_wait_on(y)
f3(x,y)

master workers

i=1

x=1

y=3

y=3 x=1

4

@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN,y=OUT)
def f2(i):

y=i+2
return y

@task(y=IN,x=IN)
def f3(x,y):

print(x+y)

def main():
x=f1(1)
y=f2(x)
f3(x,y)

ma
in

f1

f2

f3

master workers

i=1

x=1

y=3 x=1

4

Implementing CPS with COMPSs

• The complexity of parallel programming increases if guarantees on
functional and non-functional correctness must be provided

1. Functional correctness (safety) ensure a correct system operation
in response to its inputs guaranteeing system integrity
– Reliability: The property that ensures the system correctness
– Resiliency: The property that guarantees the system recovery if an

unexcepted event impacts on system correctness, e.g., a soft transient
error

2. Non functional correctness
– Time predictability: Reasoning about the timing behaviour of the parallel

execution to ensure the execution completes within a given deadline

127ACACES 2021, Fiuggi, Eduardo Quiñones

Copy-paste from
the OpenMP Lesson!

Reliability and Resiliency
1. Data races

– Occur when two workers access to the same memory object or file and at least one
of them is a write

– A memory object or file written by one worker cannot be read by another worker if
no synchronization is done

– Data races result in undefined behavior

2. Deadlocks
– COMPSs does not include mutual exclusion

3. Error handling mechanisms
– COMPSs does not include them to safely recover the parallel execution from errors

• Relies on those provided by the base programming language, i.e., exceptions in case of Python
or C++

128ACACES 2021, Fiuggi, Eduardo Quiñones

Data Races and TDG

129ACACES 2021, Fiuggi, Eduardo Quiñones

ma
in

f1

f2

@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN)
def f2(i):

y=i+2
return y

def main():
x=f1(1)
y=f2(x)
compss_wait_on(y)
print(y)

master workers

i=1

x=1

y=3

?

print(y)
The COMPSs framework raises an
exception when accessing y value!

Time predictability
• The timing behaviour of parallel execution depends on

the allocation of parallel units to computing resources
1. The parallel structure of the application

• The Task Dependency Graph (TDG)
2. The scheduler responsible of allocating COMPSs tasks to

workers
• The execution profile of the parallel units into the computing

resources
• The cost of serialization/deserialization and data transfers among

computing resources

130ACACES 2021, Fiuggi, Eduardo Quiñones

Time predictability
• Achivied by means of static allocation of COMPSs tasks to

workers due to the complexity and heterogenity of the
compute continuum infrastructure (including edge and cloud
resources)
– Schedulability analysis would result too pessimistic due to

communication costs
• Allocation heuristics tries to minimize the computation/

communication costs
– Based on the parallel nature of the TDG and the execution time

characterisation of tasks and data transfers across the compute
– Extrae and Paraver supported

131ACACES 2021, Fiuggi, Eduardo Quiñones

Time predictability:
Static Allocation Heuristics

• Heuristics based on successors
– Largest Number of Successors (LNS)

• Order of allocation of ready tasks:
3(R2),4(R3),2(R1)

• Heuristics based on processing time
– Shortest Processing Time (SPT)

• Order of allocation of ready tasks:
2(R2),4(R3),3(R1)

132ACACES 2021, Fiuggi, Eduardo Quiñones

1

2 3 4

5 6 8

Ready
tasks

2 3 4

R1

R2

R3

Task Profile (including communication and
computation) on Resources R1, R2 and R3

R1

R2

R3

R1

R2

R3

Time predictability:
Static Allocation Heuristics (Example)

133ACACES 2021, Fiuggi, Eduardo Quiñones

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking

def get_detected_objects (cam_id):
return DNN_detect_obj(cam_id)

def tracker(obj_list, track_obj):
return track(obj_list, track_obj)

def deduplicator(track_obj):
return dedupl_obj(track_obj)

def create_data_model(dedupl_obj):
snapshot = model.create(dedupl_obj)
return snapshot

def federate_to_cloud(snapshot, dC_bcknd):
snapshot.federate(backend_to_federate)

Main function
while True:

for i, camid in cameras:
obj_list = get_detected_objects (camid)
track_obj[i] = tracker(obj_list, track_obj[i])

dedupl_obj = deduplicator(track_obj)
snapshot = create_data_model(dedupl_obj)
federate_to_cloud(snapshot, dC_bcknd)

Time predictability:
Static Allocation Heuristics (Example)

134ACACES 2021, Fiuggi, Eduardo Quiñones

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking

@task(returns=list)
def get_detected_objects (cam_id):

return DNN_detect_obj(cam_id)

@task(obj_list=IN, track_obj=IN, returns=list)
def tracker(obj_list, track_obj):

return track(obj_list, track_obj)

@task(obj_list=COLLECTION_IN, returns=list)
def deduplicator(track_obj):

return dedupl_obj(track_obj)

@task(dedupl_obj=IN, model = IN)
def create_data_model(dedupl_obj):

snapshot = model.create(dedupl_obj)
return snapshot

@task(snapshot=IN, dC_bcknd = IN)
def federate_to_cloud(snapshot, dC_bcknd):

snapshot.federate(backend_to_federate)

Main function
while True:

for i, camid in cameras:
obj_list = get_detected_objects (camid)
track_obj[i] = tracker(obj_list, track_obj[i])

dedupl_obj = deduplicator(track_obj)
snapshot = create_data_model(dedupl_obj)
federate_to_cloud(snapshot, dC_bcknd)

Execution time characterisation

135

data transfer times
COMPSs task

execution times

Resource 1

Resource 2

Resource N

…

Information extracted
from Extrae + Paraver!

Static Allocation Heuristics

136ACACES 2021, Fiuggi, Eduardo Quiñones

v1 v3 v4

v2

v6

v5

v7

v8Resource 1

Resource 2

Resource N

…

v10v8

Response time Upper Bound (Rub)

task deadlines

ü Heuristics to minimize end to end response time

Static Allocation Heuristics

137ACACES 2021, Fiuggi, Eduardo Quiñones

20% below Rub

95% decrease
in jitter

compute continuum

COMPSs application (5 seconds of execution)

(TDG of 1 second of
execution)

FI
FO

Heuristics based
on successors

Heuristics based
on time

Ex
ec

ut
io

n
tim

e
(m

s)

Static Allocation in a
Dynamic Environment

138ACACES 2021, Fiuggi, Eduardo Quiñones

v1 v3

v2 v5

v4 v6 v8

workflow response time

v7 v10v9

new response time (after rescheduling)

ü Re-scheduling based on resource availability at runtime

Resource 1

Resource 2

Resource N

…

A Real CPS: A Smart Mobility TDG
• Extract valuable knowledge from a distributed sensing infrastructure,

executed on a distributed computing infrastructure

139ACACES 2021, Fiuggi, Eduardo Quiñones

Object
aggreg

Detection Tracking Hazard
detection

Detection Tracking

class-project.eu
(City of Modena)

elastic-project.eu
(City of Florence)

ACTIVITY, LOCATION

Smart City Use-case

� Deployed on the Modena Automotive Smart Area
(MASA) in the city of Modena (Italy)
- 1 Km2 urban area with connectivity that enables IoT

devices to exchange information
- Three connected Maserati cars equipped with sensors

(cameras and LiDAR) and V2I communication

� From the city perspective, an intelligent traffic
management
- “Green routes” for emergency vehicles
- Smart valet parking system

� From the car perspective, advanced driving assistance
systems
- Trajectory prediction and collision detection

9

A Real CPS: A Smart Mobility TDG

140ACACES 2021, Fiuggi, Eduardo Quiñones

3 3 13

5

24

5

6

7

1011

9

6

8

Tram sensorsCity cameras
City Mobility

System

City
scope

Supervisor
Scope

9

Tramway
scope

1. Sensor fusion
2. Tram position
3. Object recognition
4. UTC/Supervisor consolidation
5. Data fusion
6. Data aggregation
7. Dashboard
8. Hazard detection
9. Alert visualization (cars/trams)
10. Electric power consumption
11. Defect Detector

Data Analytics Methods
(COMPSs tasks)

A Real CPS: A Smart Mobility TDG

141ACACES 2021, Fiuggi, Eduardo Quiñones

D1.1 Use case requirement specification and definition
Version 1.0

12

mobility supervisor, urban traffic control systems, etc.) and other networks (e.g.
Internet, private cloud at PCC, etc.) that are relevant to the project can be configured
at the PCC and/or though the aforementioned MAN, depending on user and/or
systems requirements. Figure 5 shows the rack hosting the core components.

Figure 5: Core components of the public access Wi-Fi network are hosted in a rack at

the control centre.

2.1.2 Backbone network

The backbone network relies on a fibre optics ring, connecting the core and switches
installed at each stop. The backbone network features a fail-safe configuration and is
currently operated at 1 Gbps. The layout of the backbone network is shown below.

Figure 6: A fibre optics ring connects the control centre and the stops.

2.1.3 Access network

The Wi-Fi access network supports the 802.11a/b/g/n protocols to enable
connection of common user devices; to this end, a public SSID is published and users
gain access to the Internet through a captive portal. Moreover, hidden SSIDs are
configured on the network. A typical configuration of the access network comprises
one or more access points connected to the LAN switch installed in the cabinet at the
tramway stop. The typical layout of the access network at a single stop is shown
below.

Porta
al Prato

Field cabinet
(e.g. pole / semaphore / other)

wireless
bridgeV2X

station

edge
computer

traffic control
device(s)

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

V2X
station

edge
computer

traffic control
device(s)

camera

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

Cloud
(GEST depot)

T1 Line

Wifi
edge
computers

camera

NGAP

Wifi

LTE

3 3 13

5

24

5

6

7

1011

9

6

8

Tram sensorsCity cameras
City Mobility

System

City
scope

Supervisor
Scope

9

Tramway
scope

Described in the resources.xml file!

A Real CPS: A Smart Mobility TDG

142ACACES 2021, Fiuggi, Eduardo Quiñones

D1.1 Use case requirement specification and definition
Version 1.0

12

mobility supervisor, urban traffic control systems, etc.) and other networks (e.g.
Internet, private cloud at PCC, etc.) that are relevant to the project can be configured
at the PCC and/or though the aforementioned MAN, depending on user and/or
systems requirements. Figure 5 shows the rack hosting the core components.

Figure 5: Core components of the public access Wi-Fi network are hosted in a rack at

the control centre.

2.1.2 Backbone network

The backbone network relies on a fibre optics ring, connecting the core and switches
installed at each stop. The backbone network features a fail-safe configuration and is
currently operated at 1 Gbps. The layout of the backbone network is shown below.

Figure 6: A fibre optics ring connects the control centre and the stops.

2.1.3 Access network

The Wi-Fi access network supports the 802.11a/b/g/n protocols to enable
connection of common user devices; to this end, a public SSID is published and users
gain access to the Internet through a captive portal. Moreover, hidden SSIDs are
configured on the network. A typical configuration of the access network comprises
one or more access points connected to the LAN switch installed in the cabinet at the
tramway stop. The typical layout of the access network at a single stop is shown
below.

Porta
al Prato

Field cabinet
(e.g. pole / semaphore / other)

wireless
bridgeV2X

station

edge
computer

traffic control
device(s)

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

V2X
station

edge
computer

traffic control
device(s)

camera

D1.1 Use case requirement specification and definition
Version 1.0

13

Figure 7: Wi-Fi access points are connected to the LAN switch at each stop.

The following pictures show the different possible locations for edge and/or fog
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b))
and cabinets at stops (figure (c)).

(a)

(b)

 (c)

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop.

Access points feature a 1 Gbps copper LAN port with PoE output, enabling
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the
installation of additional devices required for the implementation of the ELASTIC use
cases.

Cloud
(GEST depot)

T1 Line

Wifi
edge
computers

camera

NGAP

Wifi

LTE

3 3 13

5

24

5

6

7

1011

9

6

8

Tram sensorsCity cameras
City Mobility

System

City
scope

Supervisor
Scope

9

Tramway
scope

Described in the resources.xml file!

A Real CPS: A Smart Mobility TDG

143ACACES 2021, Fiuggi, Eduardo Quiñones

~42%
~29%

Simultaneous processing of 3 video sources
with the COMPSs data analytics workflow

Rub

Ex
ec

ut
io

n
tim

e
(m

s)

Conclusion
• COMPSs provides a task-based framework for the

development of complex data-analytics workflows
– Similar principles of OpenMP
– Time predictability is achieved by means of static

allocation heuristics
• The use of tracing tools (e.g., Extrae and Paraver) are needed to

incorporate the required information and further understand the
execution behaviour

• Currently being applied in real CPS projects
144ACACES 2021, Fiuggi, Eduardo Quiñones

Home-take Message

1. CPS requires parallel computation to cope with the performance
requirements of the most advanced functionalities, and…

2. … current task-based parallel programming models allows to reasoning
about functional correctness and time predictability while removing from
developers the responsibilty of managing the complexity of parallel
execution

3. Unfortunately, reasoning is not enough… it must be guaranteed!!!

145ACACES 2021, Fiuggi, Eduardo Quiñones

VERY INTERESTING RESEARCH IS
STILL PENDING!

ACACES 2021, Fiuggi

Task-based Parallel Programming Models:
The Convergence of High-Performance and Cyber-

Physical Computing Domains

Eduardo Quiñones
{eduardo.quinones@bsc.es}

