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Welcome!

What are your expectations on this course? 
(or why did you choose this course?)

Goal of this course:
Understanding the benefits and the research challenges of 

applying task-based parallel programming models (OpenMP 
and COMPSs) when developing Cyber-Physical Systems 

(CPS)
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Structure of the Course
1. Introduction

– Cyber-Physical Systems (CPS)
– Task-Based Parallel Programming Models: OpenMP and COMPSs

2. Lesson 2: OpenMP
– API, execution model and memory model
– Challenges of applying OpenMP to CPS

3. Lesson 3: OpenMP and CPS
– Functional correctness and time predictability

• OpenMP tracing

– Model driven engineering and OpenMP
4. Lesson 4: Distribution across the compute continuum: COMPSs

– API, execution model and memory model
– Functional correctness and time predictability

• COMPSs tracing

– A real CPS: A smart mobility application
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Outline
• Cyber-Physical Systems (CPS)
– Requirements and computing infrastructure
– Types of CPS
– Software development complexity

• Task-based Parallel Programming Models
– Introduction to parallel programming models
– OpenMP and COMPSs
– Model Driven Engineering
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Performance becomes as important as 
other non-functional requirements!

Network of HW/SW 
components (cyber) that must

operate correctly in response to 
its (physical) inputs from a 

functional and non-functional
perspective 

The Convergence of High-Performance and 
Real-Time Computing Domains

66

Computing Spectrum
High Performance 
Computing (HPC) 

Systems

Cyber-Physical 
Systems (CPS)

Massive parallel systems 
that operates as fast as 

possible
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• CPS integrates the computation, networking and 
physical processes
– Non-functional requirements (NFR) are inherited from the 

Cyber-physical interactions

• Embedded systems are typically responsible of the 
control part of the CPS
– Embedded systems must fulfil the NFR from CPS

CPS vs. Embedded Systems
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Non-functional Requirements (NFR)
• Inherited due to the cyber-physical interactions, e.g.,

– Real-time: The end-to-end response time (from sensor to actuator) must 
be within a given time budget

– Power/Thermal: The energy/temperature of the computing elements 
must be within a given budget due to power supply/operational 
environment limitations

– Safety: CPS must be built guaranteeing the correctness and integrity of its 
operation

– Security: CPS must prevent external elements not to affect the correctness 
and integrity of the system

• Performance: CPS must provide the computing power to 
implement advanced functionalities 
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Processor Design Trend

99

Irruption of multi-cores

Heterogeneous and 
Parallel computing
becomes key to cope 
with performance 
requirements

ACACES 2021, Fiuggi, Eduardo Quiñones



Converging HPC and CPS: 
Parallel and Heterogeneous Computing

10

NVIDIA Jetson Family
(GPU-based)

Kalray MPPA Coolidge
(80-core fabric)

NVIDIA A100
(GPU-based)

Intel Xeon Series 
(40-core fabric)

HPC Domain (~300W) Embedded Domain (~10-20W)

Xilinx Versal
(GPU- and FPGA-based with 
dynamic partial reconfiguration)

CPS takes full benefit of heterogeneous 
computing due to the dedicated 

accelerators and low power consumption 
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Heterogeneous and Parallel Processor 
Architectures
Host-centric paradigm: The parallel computation is orchestrated 
by the general-purpose multi-core
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Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW 
func 

HW 
func 

HW 
func 

Interface with the 
(physical) world

Addressable memory by the 
different computing elements

Reconfigurable logic 
including dynamic partial 
reconfiguration

Network on Chip (NoC)

Optimised HW functions

Accelerator for optimized 
graphical processing, linear 
algebra and deep learning

General purpose multi-core for 
control-flow applications and 

parallel orchestration
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Compute Continuum: From Edge to Cloud

CPS is suitable for IoT and edge computing 
paradigms
• The computation is selectively move 

close to the data-sources so decision-
making occurs as close as possible
– Enables faster real-time processing, higher 

privacy control and lower network costs
– The use of powerful heterogeneous 

embedded processor architectures 
becomes fundamental

• Cloud computing is used to execute 
computational intensive and batch 
processes
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Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW 
func 

HW 
func 

HW 
func 

Com
pute Continuum
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Two types of CPS
• Tighly-couple CPS

– Subsystems execute within the same processors or in a 
controlled (and reliable) network of few processors (e.g., 
automotive domain)

• Loosely-couple CPS
– Subsystems execute within a non-reliable network of 

heterogenous computing elements, i.e., the compute 
continuum (e.g., smart cities)

– Some subsystems may implement tighly-couple CPS

13ACACES 2021, Fiuggi



Tighly Couple CPS Example: 
Vehicle Collision Detection

14

14

An Adavanced Driving Assistant System (ADAS) used to identify
objects in front of vehicles and detect potential collisions

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW 
func 

HW 
func 

HW 
func 

Multi-core (Host)TPU/GPU
(Accelerator)

Peripherals HW 
func 
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Loosely-couple CPS Example : 
Smart City Collision Detection

15

Sensing capabilities of vehicles and cities can be combined to 
identify hazardous situations

Object
aggreg

Detection Tracking Hazard 
detection

Detection Tracking

Compute Continuum 

 
D1.1 Use case requirement specification and definition    
Version 1.0  
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Figure 7: Wi-Fi access points are connected to the LAN switch at each stop. 

The following pictures show the different possible locations for edge and/or fog 
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b)) 
and cabinets at stops (figure (c)). 

(a)  

 

 

(b) 

 

                                     (c)  

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole 
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 

Tram StopStreetlight
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The block diagram of the ODAS use-case is depicted in Figure 
4. The use-case incorporates two main subsystems: the Sensor 
Data Fusion (SDF) and the AI Analytics (AI) components.   
The SDF component will be in charge of collecting a large mass 
of raw data from the multiple advanced sensors installed in tram 
vehicle, i.e., optical and thermal cameras, radars and LiDARs 
(light detection and ranging). Cameras are a very good tool for 
classifying objects (rails, signs vehicle, people...) through deep 
learning technologies; LiDAR and radar are good at estimating 
the position of objects around the vehicle. Each of these sensors 
has advantages and disadvantages depending on the operational 
scenarios, environmental and lighting conditions. For instance, 
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and 
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using 
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance 
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate 
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the 
tramway infrastructure and extract knowledge that will be displayed to the tram driver.  

 The two components will be distributed and executed in a COTS parallel 
and heterogeneous platform installed on-board tram vehicles, featuring 
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as 
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation. 
Moreover, the platform will host multiple standard hardware interfaces to 
ease the integration of the system into a wide range of operation conditions. 
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.  

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do 
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing 
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the 
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of 
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an 
urban environment with traffic mixed with cars and pedestrians (see Figure 5). 

AMPERE Use Case Key Performance Indicators (KPIs) 
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases. 

Use case KPI Measure 

Intelligent Pre-
dictive Cruise 
Control (PCC) 

(BOS) 

Satisfy the high computation demands of PCC algorithms while 
guaranteeing the safety properties of the powertrain control and 
ACC functionalities.  

High system utilization (> 
90%) with provable safety 
properties  

Maintain the functional properties of the PCC when integrating 
further synthetic applications, to demonstrate the compositional 
integration capabilities of the AMPERE ecosystem. 

Maintain exactly the same 
functional properties 

Providing a reduced development effort for integrating new 
functionalities in an existing system, by coupling the AMPERE 
ecosystem with existing automotive standards and tools. 

30% reduction of develop-
ment efforts 

Obstacle Detec-
tion and 

Avoidance Sys-
tem (ODAS) 
(THALIT) 

Reduce the development and integration costs of the ADAS 
functional critical software modules by employing the 
AMPERE ecosystem starting from the system design phase. 

< 20% of development 
and integration costs 

Improve the object detection capability and reduce the false 
alarms rate in critical environmental conditions (fog, rain, at 
night) by combining AMPERE with existing on-board systems.  

- > 20% objects detected  
- < 15% False alarms rate 
 

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.  

> 20% reduction in com-
puting energy needs  

Figure 5: Tramway at Florence 
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D1.1 Use case requirement specification and definition    
Version 1.0  

13 

  
Figure 7: Wi-Fi access points are connected to the LAN switch at each stop. 

The following pictures show the different possible locations for edge and/or fog 
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b)) 
and cabinets at stops (figure (c)). 

(a)  

 

 

(b) 

 

                                     (c)  

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole 
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 

Tram StopStreetlight

[ICT-01-2019 AMPERE] - page 12 of 90 

The block diagram of the ODAS use-case is depicted in Figure 
4. The use-case incorporates two main subsystems: the Sensor 
Data Fusion (SDF) and the AI Analytics (AI) components.   
The SDF component will be in charge of collecting a large mass 
of raw data from the multiple advanced sensors installed in tram 
vehicle, i.e., optical and thermal cameras, radars and LiDARs 
(light detection and ranging). Cameras are a very good tool for 
classifying objects (rails, signs vehicle, people...) through deep 
learning technologies; LiDAR and radar are good at estimating 
the position of objects around the vehicle. Each of these sensors 
has advantages and disadvantages depending on the operational 
scenarios, environmental and lighting conditions. For instance, 
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and 
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using 
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance 
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate 
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the 
tramway infrastructure and extract knowledge that will be displayed to the tram driver.  

 The two components will be distributed and executed in a COTS parallel 
and heterogeneous platform installed on-board tram vehicles, featuring 
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as 
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation. 
Moreover, the platform will host multiple standard hardware interfaces to 
ease the integration of the system into a wide range of operation conditions. 
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.  

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do 
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing 
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the 
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of 
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an 
urban environment with traffic mixed with cars and pedestrians (see Figure 5). 

AMPERE Use Case Key Performance Indicators (KPIs) 
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases. 

Use case KPI Measure 

Intelligent Pre-
dictive Cruise 
Control (PCC) 

(BOS) 

Satisfy the high computation demands of PCC algorithms while 
guaranteeing the safety properties of the powertrain control and 
ACC functionalities.  

High system utilization (> 
90%) with provable safety 
properties  

Maintain the functional properties of the PCC when integrating 
further synthetic applications, to demonstrate the compositional 
integration capabilities of the AMPERE ecosystem. 

Maintain exactly the same 
functional properties 

Providing a reduced development effort for integrating new 
functionalities in an existing system, by coupling the AMPERE 
ecosystem with existing automotive standards and tools. 

30% reduction of develop-
ment efforts 

Obstacle Detec-
tion and 

Avoidance Sys-
tem (ODAS) 
(THALIT) 

Reduce the development and integration costs of the ADAS 
functional critical software modules by employing the 
AMPERE ecosystem starting from the system design phase. 

< 20% of development 
and integration costs 

Improve the object detection capability and reduce the false 
alarms rate in critical environmental conditions (fog, rain, at 
night) by combining AMPERE with existing on-board systems.  

- > 20% objects detected  
- < 15% False alarms rate 
 

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.  

> 20% reduction in com-
puting energy needs  

Figure 5: Tramway at Florence 

√
CAMERA

RADAR

Pre-processing 
Units

Pre-processing 
Units

Pre-processing 
Units

Sensor 
Data 

Fusion

AI 
Analytics

GPUs
Heterogenous Platform

(CPU+GPU+FPGA)

Figure 4. Block diagram of the ODAS use-case. 

Connected Car

Wifi 
Eth

Wifi 
LTE
5G

Eth

Loosely-couple CPS Example: 
Smart City Collision Detection

16

Object
aggreg

Detection Tracking Hazard 
detection

Detection Tracking Tracking

Detection Tracking

Detection

Object
aggreg

Hazard 
detection

Object
aggreg

Hazard 
detection

Sensing capabilities of vehicles and cities can be combined to 
identify hazardous situations
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How would you develop such a CPS?
1. Exploit the parallel performance 

capabilities of the (different) 
processor architectures

2. Efficiently distribute the data-
analytics workflow across the 
compute continuum

3. Guarantee functional correctness 
and the non-functional 
requirements of the CPS

17

Compute Continuum 
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SW Development Complexity

18

Source: ITRS & Hardware-dependent Software, Ecker et al., Springer

This course will present the task-
based parallel programming 
model to efficiently:
1. Exploit parallelism 
2. Distribute computation 

across the compute 
continuum

3. Reason about the functional 
and non-functional 
correctness
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Outline
• Cyber-Physical Systems (CPS)
– Requirements and computing infrastructure
– Types of CPS
– Software development complexity

• Task-based Parallel Programming Models
– Introduction to parallel programming models
– OpenMP and COMPSs
– Model Driven Engineering
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Parallel Programming Models

• A set of programming elements to describe the parallel 
behaviour of an application and abstract the 
complexities of the underlying parallel platform
– Granularity level of parallelism exploited: instruction, 

statement, loop, procedural
– Synchronization model: coarse-grain, fine-grain
– Execution model: fork-join, thread-pool, etc.
– Memory model: Shared, distributed

• Commonly built on top of a base programming language
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Parallel Programming Models

Parallel Programming Models

• Mandatory to enhance productivity
– Programmability. Abstracts the parallelism while 

hiding the underlying computing platform 
complexities

– Portability/scalability. The same source code is 
valid in different parallel platforms

– Performance. Rely on run-time mechanisms to 
exploit the performance capabilities of parallel 
platforms 

21

Conventional Models
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Types of Parallel Programming Models
• Hardware-centric

– Provide a user-friendly interface to tune the application to native platform features, 
e.g., NVIDIA CUDA

– None portable
• Application-centric

– The application must fulfill the execution model to exploit parallelism, e.g. OpenCL
– May require a full rewriting process of the application, impacting on programmability

• Parallelism-centric
– Parallelism is expressed by means of constructs various levels of abstraction, e.g. 

POSIX threads, OpenMP, OpenACC, MPI, COMPSs, Spark, Ray
– This approach allows flexibility and expressiveness, while decoupling design from 

implementation
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Type of Parallelism
• Structured parallelism: The parallel 

execution follows a regular pattern
– Very suitable for parallel loops
– E.g., fork-join, pipeline

• Unstructured parallelism: The 
parallel execution does not fit 
within a pattern, or it change 
dynamically
– Suitable for procedural-level 

parallelism
– E.g., tasking

23

parallel for (i=LB; i<UB; ++i)
do_computation();

endfor

Distribute the loop iteration 
among parallel units (threads)

fork

join
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task
do_computation_1();

endtask
…
task

do_computation_N();
endtask

Distribute tasks among 
parallel units (threads)



Parallel Programming Models and 
Programming Languages

24

Model Base 
Language

Type of 
PPM

Type of 
architect

Type of 
Parallelism

CUDA C/C++, 
Python

HW-
centric

NVIDIA GPU Struct/ 
Unstruct

OpenCL C/C++ App-
centric

GPU/ 
FPGAs

Struct

OpenMP C/C++ Parallel-
centric

Shared 
mem

Struct/ 
Unstruct

Pthreads C/C++ Parallel-
centric

Shared 
mem

Unstruct

MPI C/C++, 
Python

Parallel-
centric

Distributed 
mem

Unstruct

COMPSs C++, Java 
Python

Parallel-
centric

Distributed 
mem

Unstruct

Spark Java, 
Python

Parallel-
centric

Distributed 
mem

Struct

Ray C++,Java 
Python

Parallel-
centric

Distributed 
mem

Unstruct
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Why OpenMP?

ACACES 2021, Fiuggi, Eduardo Quiñones

• Mature language constantly reviewed (last release Nov 2020, v5.1)
– Defacto industrial standard in HPC
– Active research community with an increasing interest on the CPS domain

• Productivity in parallel programming
– Performance

• Exploitation of structured and unstructured fine-grain parallelism coupled with an advanced accelerator model
• Powerful task-based model supporting fine-grain synchronization mechanisms based on data-dependencies 

among tasks
• Performance analysis tools of the parallel execution

– Portability 
• Supported by many chip vendors  used in CPS (Intel, IBM, ARM, NVIDIA, TI, Gaisler, Kalray)

– Programmability 
• Interoperability with other programming models (e.g., CUDA, OpenCL)
• Allows incremental parallelization (#pragma omp) that can be easily compiled sequentially



Why COMPSs?

ACACES 2021, Fiuggi, Eduardo Quiñones

• Programming distribute framework highly inspired in the OpenMP tasking model
– Programs are written sequentially in Python, Java or C++
– The code is annotated to describe asynchronous procedures (task) than can execute in parallel

• Includes a fine-grain synchronization mechanism based on data dependencies among tasks

• Productivity in distributed programming
– Performance

• Exploitation of distributed computation in heterogeneous HPC and edge/cloud environments
• Powerful performance analysis tool of the distributed execution

– Portability 
• Supports many HPC and cloud technologies: DFS, Docker, Kubernetes, Serverless, etc.

– Programmability 
• Interoperability with other programming models (e.g., OpenMP)
• Currently available for Python, Java and C++
• Allows incremental parallelization (@task) to easily execute sequentially



void main() { 
#pragma omp parallel
#pragma omp master
{

int x,y;
#pragma omp task depend(out:x,y)
{ f1(&x,&y); }
#pragma omp task depend(in:x)
{ f2(x); }
#pragma omp target map(to:y) depend(in:y)
{ f3(y); } 

}
}

OpenMP Tasking Model

ACACES 2021, Fiuggi, Eduardo Quiñones

2. Tasks executed 
on the host

3. Tasks executed on the host and 
accelerator when f1 completes

void main() {
int x,y;
f1(&x,&y);
f2(x);
f3(y);

}

Sequential version

OpenMP version

Executes on the host

Executes on the
accelerator

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW 
func 

HW 
func 

HW 
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1. Open 
parallelism

fork

join
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Object
aggreg

Detection Tracking Hazard 
detection

Detection Tracking



COMPSs Tasking Model

Compute Continuum 

 
D1.1 Use case requirement specification and definition    
Version 1.0  

13 

  
Figure 7: Wi-Fi access points are connected to the LAN switch at each stop. 

The following pictures show the different possible locations for edge and/or fog 
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b)) 
and cabinets at stops (figure (c)). 

(a)  

 

 

(b) 

 

                                     (c)  

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole 
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 

Tram StopStreetlight
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The block diagram of the ODAS use-case is depicted in Figure 
4. The use-case incorporates two main subsystems: the Sensor 
Data Fusion (SDF) and the AI Analytics (AI) components.   
The SDF component will be in charge of collecting a large mass 
of raw data from the multiple advanced sensors installed in tram 
vehicle, i.e., optical and thermal cameras, radars and LiDARs 
(light detection and ranging). Cameras are a very good tool for 
classifying objects (rails, signs vehicle, people...) through deep 
learning technologies; LiDAR and radar are good at estimating 
the position of objects around the vehicle. Each of these sensors 
has advantages and disadvantages depending on the operational 
scenarios, environmental and lighting conditions. For instance, 
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and 
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using 
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance 
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate 
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the 
tramway infrastructure and extract knowledge that will be displayed to the tram driver.  

 The two components will be distributed and executed in a COTS parallel 
and heterogeneous platform installed on-board tram vehicles, featuring 
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as 
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation. 
Moreover, the platform will host multiple standard hardware interfaces to 
ease the integration of the system into a wide range of operation conditions. 
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.  

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do 
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing 
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the 
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of 
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an 
urban environment with traffic mixed with cars and pedestrians (see Figure 5). 

AMPERE Use Case Key Performance Indicators (KPIs) 
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases. 

Use case KPI Measure 

Intelligent Pre-
dictive Cruise 
Control (PCC) 

(BOS) 

Satisfy the high computation demands of PCC algorithms while 
guaranteeing the safety properties of the powertrain control and 
ACC functionalities.  

High system utilization (> 
90%) with provable safety 
properties  

Maintain the functional properties of the PCC when integrating 
further synthetic applications, to demonstrate the compositional 
integration capabilities of the AMPERE ecosystem. 

Maintain exactly the same 
functional properties 

Providing a reduced development effort for integrating new 
functionalities in an existing system, by coupling the AMPERE 
ecosystem with existing automotive standards and tools. 

30% reduction of develop-
ment efforts 

Obstacle Detec-
tion and 

Avoidance Sys-
tem (ODAS) 
(THALIT) 

Reduce the development and integration costs of the ADAS 
functional critical software modules by employing the 
AMPERE ecosystem starting from the system design phase. 

< 20% of development 
and integration costs 

Improve the object detection capability and reduce the false 
alarms rate in critical environmental conditions (fog, rain, at 
night) by combining AMPERE with existing on-board systems.  

- > 20% objects detected  
- < 15% False alarms rate 
 

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.  

> 20% reduction in com-
puting energy needs  

Figure 5: Tramway at Florence 
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Figure 4. Block diagram of the ODAS use-case. 
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@task(x=OUT,y=OUT)
def f1():

…
return x,y

@task(x=IN)
def f2(x):

…

@task(y=IN)
def f3(y)

…
def main():

x,y=f1()
f2(x)
f3(y)

Tasks executed 
across the compute 
continuum

def f1():
…
return x,y

def f2(x):
…

def f3(y)
…

def main():
x,y=f1()
f2(x)
f3(y)

f3f1 f2main
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Principle behind Tasking Models
• Tasking provides a great expressiveness to describe the parallel 

nature of applications
– Developers specify what the application does and not how it is done
– The parallel framework is responsible of orchestrating the execution

• Tasking facilitates programmability, but …
– … complicates deriving functional and

non-functional correctness
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Computation is not fully controlled by the 
programmer but by the parallel framework



Main Factors Impacting Parallel Execution

1. Parallel structure of the application (including data usage): 
Task Dependency Graph (TDG) or Direct Acyclic Graph (DAG)

2. The execution and memory model: The Runtime Scheduler
responsible of mapping task to parallel units

30ACACES 2021, Fiuggi, Eduardo Quiñones

@task(x=OUT,y=OUT)
def f1():

…
return x,y

@task(x=IN)
def f2(x):

…
@task(y=IN)
def f3(y)

…
def main():

x,y=f1()
f2(x)
f3(y)

COMPSs version
void main() { 

#pragma omp parallel
#pragma omp master
{

int x,y;
#pragma omp task depend(out:x,y)
{ f1(&x,&y); }
#pragma omp task depend(in:x)
{ f2(x); }
#pragma omp target map(to:y) depend(in:y)
{ f3(y); } 

OpenMP version

f3
f1

f2

main

f3f1 f2main

f1

f2 f3

yx
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Model Driven Engineering and 
Parallel Programming Models
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Sensors ActuatorsMDE
(e.g. CAPELLA, 

AMALTHEA, 
AUTOSAR)

Logic 
Controller 

Model Driven Engineering (MDE) in CPS
1. Construction of complex systems
2. Formal verification of functional and non-functional requirements

with composability features
3. Correct-by-construction paradigm by means of code generation

• Suitable only for single-core execution or with very limited multi-core support

Parallel Programming Models
1. Mandatory for SW productivity in terms of 

• Programmability: Parallel abstraction while hiding HW complexities
• Portability: Compatibility multiple HW platforms
• Performance: Exploiting parallel capabilities of underlying HW

2. Efficiet offloading to HW acceleration devices for an energy-
efficient parallel execution

Run-time 
parallel

frameworks

Parallel 
Programming 

Models
(e.g. OpenMP, 

OpenCL, 
CUDA, COMPSs)

Parallel
Execution 

Model

Parallel Units

Parallel Untits

Parallel Units

Gap between the MDE used for CPS and the PPM supported by parallel platforms



Model Driven Engineering and 
Parallel Programming Models

32ACACES 2021, Fiuggi, Eduardo Quiñones

Bridge 
the gap

1. Synthesis methods for an efficient generation of 
parallel source code, while keeping non-
functional and composability guarantees

2. Run-time parallel frameworks that guarantee
system correctness and exploit the performance 
capabilities of parallel architectures

3. Integration of parallel frameworks into MDE 
frameworks

Sensors ActuatorsMDE
(e.g. CAPELLA, 

AMALTHEA, 
AUTOSAR)

Logic 
Controller 

Run-time 
parallel

frameworks

Parallel 
Programming 

Models
(e.g. OpenMP, 

OpenCL, 
CUDA, COMPSs)

Parallel
Execution 

Model

Parallel Units

Parallel Untits

Parallel Units



Conclusion:
CPS and Parallel Computation
1. CPS requires parallel computation to cope with the performance 

requirements of the most advanced functionalities, but…
2. … current parallel frameworks remove from developers the responsibilty of 

managing the parallel execution, difficulting deriving guarantees of 
functional and non-functional correctness

3. … most CPS are implemented using model driven engineering approaches

This course will present the benefits and challenges of applying tasking parallel 
programming model

Ø Focus on two specific parallel programming languages: OpenMP and COMPSs
Ø The same concepts applies to other tasking languages
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Recap of Lesson 1 in one slide

34

Compute Continuum 

 
D1.1 Use case requirement specification and definition    
Version 1.0  

13 

  
Figure 7: Wi-Fi access points are connected to the LAN switch at each stop. 

The following pictures show the different possible locations for edge and/or fog 
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b)) 
and cabinets at stops (figure (c)). 

(a)  

 

 

(b) 

 

                                     (c)  

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole 
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 
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The block diagram of the ODAS use-case is depicted in Figure 
4. The use-case incorporates two main subsystems: the Sensor 
Data Fusion (SDF) and the AI Analytics (AI) components.   
The SDF component will be in charge of collecting a large mass 
of raw data from the multiple advanced sensors installed in tram 
vehicle, i.e., optical and thermal cameras, radars and LiDARs 
(light detection and ranging). Cameras are a very good tool for 
classifying objects (rails, signs vehicle, people...) through deep 
learning technologies; LiDAR and radar are good at estimating 
the position of objects around the vehicle. Each of these sensors 
has advantages and disadvantages depending on the operational 
scenarios, environmental and lighting conditions. For instance, 
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and 
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using 
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance 
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate 
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the 
tramway infrastructure and extract knowledge that will be displayed to the tram driver.  

 The two components will be distributed and executed in a COTS parallel 
and heterogeneous platform installed on-board tram vehicles, featuring 
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as 
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation. 
Moreover, the platform will host multiple standard hardware interfaces to 
ease the integration of the system into a wide range of operation conditions. 
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.  

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do 
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing 
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the 
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of 
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an 
urban environment with traffic mixed with cars and pedestrians (see Figure 5). 

AMPERE Use Case Key Performance Indicators (KPIs) 
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases. 

Use case KPI Measure 

Intelligent Pre-
dictive Cruise 
Control (PCC) 

(BOS) 

Satisfy the high computation demands of PCC algorithms while 
guaranteeing the safety properties of the powertrain control and 
ACC functionalities.  

High system utilization (> 
90%) with provable safety 
properties  

Maintain the functional properties of the PCC when integrating 
further synthetic applications, to demonstrate the compositional 
integration capabilities of the AMPERE ecosystem. 

Maintain exactly the same 
functional properties 

Providing a reduced development effort for integrating new 
functionalities in an existing system, by coupling the AMPERE 
ecosystem with existing automotive standards and tools. 

30% reduction of develop-
ment efforts 

Obstacle Detec-
tion and 

Avoidance Sys-
tem (ODAS) 
(THALIT) 

Reduce the development and integration costs of the ADAS 
functional critical software modules by employing the 
AMPERE ecosystem starting from the system design phase. 

< 20% of development 
and integration costs 

Improve the object detection capability and reduce the false 
alarms rate in critical environmental conditions (fog, rain, at 
night) by combining AMPERE with existing on-board systems.  

- > 20% objects detected  
- < 15% False alarms rate 
 

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.  

> 20% reduction in com-
puting energy needs  

Figure 5: Tramway at Florence 
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Outline
• OpenMP API
• Execution Model and Memory Model
• Spawning and Distributing Parallelism
• Synchronization and Data-Sharings
• Challenges of applying OpenMP to CPS
• Conclusions
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OpenMP API
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Compiler directives
• Annotations in the source code
• Can be easily ignored by the compiler, allowing for incremental parallelization
• Directives can include clauses to define properties of the directive

#pragma omp parallel num_threads(4)
{…}

omp_set_num_threads(4);

sh$ OMP_NUM_THREADS=4 ./openmp_exec

Runtime library routines
• Get/Set runtime information from source code

Environment variables
• Set runtime information at execution time



Execution Model: Fork-Join
• OpenMP programs start execution with a unique initial thread
• Worker threads are spawned in parallel regions (#pragma omp parallel)
• The thread encountering a parallel region becomes the master thread, and 

together with worker threads, form a team
• Worker threads are destroyed (or put to sleep) between parallel regions
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A

B

A
B
C
D

Parallel region 1
(team)

Parallel region 2
(team)

Initial thread
Master thread
Worker thread
Sleeping worker

Serial part Serial part Serial part

Fork
ForkJoin

Join



Execution Model: Fork-Join
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…
#pragma omp parallel num_threads(2)
{

…
}
…
#pragma omp parallel num_threads(4)
{

…
}

A

B

A
B
C
D

Parallel region 1
(team)

Parallel region 2
(team)

Initial thread
Master thread
Worker thread
Sleeping worker

Serial part Serial part

Fork
ForkJoin

Join



Team of OpenMP Threads
(#pragma omp parallel num_threads)

Execution Model: Abstraction Layers
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OpenMP Task 
(#pragma omp task)

OS Threads
(pool of threads)

HW Threads/HW Cores
Multi-core
(Host)

TPU/GPU
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FPGA
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HW 
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HW 
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HW 
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Memory Model: 
Relaxed-consistency shared-memory
• Different views of the memory

• Designed for shared memory nodes (UMA/NUMA)
– Extended for heterogeneous computing nodes, i.e., host + accelerator(s)

• The access to variables can be shared or private 
– shared, firstprivate, private, lastprivate clauses

• Memory consistency is enforced by (implicit/explicit) flush operations

41ACACES 2021, Fiuggi, Eduardo Quiñones

Main memory Shared for all threads

Temporary view Copy of the main memory for a given 
thread and a region of the execution

Threadprivate
memory

Particular to each thread 
(not recommended to be used!)

thread 1 thread 2



Spawning Parallelism
• Parallelism is spawned when a parallel

construct is found
– Threads of a team are synchronized when a 

barrier construct is found
– There is an implicit barrier at the end of a parallel 

region.
• Parallel regions can be nested.
• The number of threads suitable for each region 

can be defined by the programmer
– Construct clause: num_threads(4)
– Runtime library routine: omp_set_num_threads(4)
– Environment variable: OMP_NUM_THREADS=4
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…

#pragma omp parallel num_threads(2)
{…}

…

#pragma omp parallel num_threads(4)
{

…
#pragma omp parallel num_threads(3)
{…}
…

}

…
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Hands-on: Hello World Program

• How many messages?
• In which order?
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Hands-on: Hello World Program

• How many messages? 4
• In which order? UNDETERMINED

A
B
C
D

Parallel region
(team)



Distributing Parallelism
• Thread-centric model

– Conceptual abstraction of user-level threads
– Structured data-parallelism
– Representative constructs: for and sections

• Task-centric model (introduced in v3.0, May 2008)
– Oblivious of the physical layout
– Structured and unstructured data- and task- parallelism
– Representative constructs: task and taskloop
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Ø Prescriptive
ü Less overhead
ü Highly tunable

Ø Descriptive
ü Dynamic parallelism
ü Fine-grain 

synchronization

Focus 
of this 

course!



Distributing parallelism with the thread model
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#pragma omp parallel num_threads(4)
#pragma omp for
for (i=LB; i<UB; ++i) {

do_computation();
}

#pragma omp parallel num_threads(4)
#pragma omp sections
{

#pragma omp section
{ do_computation_1(); }
…
#pragma omp section
{ do_computation_N(); }

}

loop-chuncks
Distribute                                among threads

structured 
blocks

Parallel loops:

Parallel sections:



for loop schedule clause
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static:

static,n:

dynamic,n:

guided,n:

Assign a consecutive block of iterations 
to each thread in a round-robin fashion

Define chunk size to enhance load 
balance although introducing overhead

Allow threads to fetch chunks as they 
are idle; chunck size can be defined as 
well

Chunk size is proportional to the 
number of unassigned iterations 
divided by the number of threads; 
chunck size can be defined as well
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Hands-on: for loop

• How many messages?
• In which order?
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Hands-on: for loop

• How many messages? 20
• In which order? UNDETERMINED

static,2static static



Distributing parallelism with the task model
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#pragma omp parallel num_threads(4)
#pragma omp master
{

#pragma omp task
{ do_computation_1(); }
…
#pragma omp task
{ do_computation_N(); }

}

#pragma omp parallel num_threads(4)
#pragma omp master
{

#pragma omp taskloop
for (i=LB; i<UB; ++i)

do_computation();
}

The team of threads executes 
a set of ready tasks
Scheduling is implementation 
defined

Ready task queueA task (i.e., a task region and 
its data environment) is 
generated when a thread 
encounters a task construct

A taskloop distributes 
iterations across tasks 
generated by the construct



• The OpenMP fork-join model is not suitable for the tasking model
– The parallel construct replicates the encapsulated code to all threads

• The master and single constructs assigns the code within the parallel 
region to a single thread
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Distributing parallelism with the task model

#pragma omp parallel \
num_threads(4)

{
A;

}

#pragma omp parallel \
num_threads(4)

#pragma omp master
{

A;
}

A A A A A
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Hands-on: task

• How many messages?
• In which order?
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Hands-on: task

• How many messages? 4
• In which order? UNDETERMINED

#pragma omp master



54ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: task

• Which units can run concurrently?
• Where does task can be inserted?

Granularity of the parallel execution
- Amount of execution done by each task
Degree of parallelism 
- How many tasks can be potentially 

executed simultaneously
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Hands-on: task
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Hands-on: task and taskloop

Equivalent if single iterations are distributed across threads: grainsize(strict:1)



Synchronization and data-sharings
• Mechanisms to define the order and the type of access to data

– Prevents data races: two threads access the same object and at least one of 
them is a write

• Synchronization imposes an order of execution of parallel units
• Data-sharings define the scope at which a change in a variable is visible
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Thread-centric model: 
- barrier
- nowait (clause)

Task-centric model: 
- taskwait
- taskgroup
- depend (clause)

- private (clause)
- firstprivate (clause)
- Lastprivate (clause)
- shared (clause)

Memory fences Memory consistency Mutual exclusion

- atomic
- critical



Memory Fences for the Thread Model

58ACACES 2021, Fiuggi, Eduardo Quiñones

barrier

• All threads of the team 
must execute the barrier 
and any pending work 
before proceeding

nowait (clause)

• Avoid unnecessary implicit 
synchronizations

#pragma omp parallel
{

#pragma omp for nowait
for (i=1; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;
#pragma omp for nowait
for (i=0; i<m; i++)

y[i] = sqrt(z[i]);
}

#pragma omp parallel
{

#pragma omp for
for (i=1; i<n; i++)

b[i] = (a[i] + a[i-1]) / 2.0;
#pragma omp for
for (i=0; i<m; i++)

y[i] = sqrt(z[i]);
}



Memory Fences for the Task Model
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taskwait

• The encountering task is 
suspended until all 
previous child tasks have 
executed

taskgroup

• Generates a new region 
where all inner tasks have 
to finish before the 
encountering thread can 
proceed

#pragma omp task // T1
{

#pragma omp task // T2
{…}

}
#pragma omp task // T3
{…}
#pragma omp taskwait

#pragma omp taskgroup
{

#pragma omp task // T1
{

#pragma omp task // T2
{…}

}
#pragma omp task // T3
{…}

}

T1

T2T3

TW

T1

T2T3

TW



Memory Fences for the Task Model
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depend (clause)
• Enforce ordering 

constraints on the 
scheduling of tasks

• Defines data-flow 
execution

for (int k = 0; k < nt; k++) {
#pragma omp task depend (inout: Ah[k][k])
potrf (Ah[k][k]);

for (int i = k + 1; i < nt; i++) {
#pragma omp task depend (in: Ah[k][k]) \

depend (inout: Ah[k][i])
trsm (Ah[k][k], Ah[k][i]);

}
for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++)
#pragma omp task depend (in: Ah[k][i], Ah[k][j]) \

depend (inout: Ah[j][i])
gemm (Ah[k][i], Ah[k][j], Ah[j][i]);

#pragma omp task depend (in: Ah[k][i]) \
depend (inout: Ah[i][i])

syrk (Ah[k][i], Ah[i][i]);
}}

Task Dependency 
Graph (TDG)

Cholesky Factorization



Data-sharing attributes
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Main memory

Temporary 
view

thread 1 thread 2

int a = 1, res;
#pragma omp parallel shared(res) firstprivate(a)
#pragma omp master 
{

int x,y;
#pragma omp task shared(x) firstprivate(a)
x = a*a;
#pragma omp task shared(y) firstprivate(a)
y = a+a;
#pragma omp taskwait
res = x+y;

}

a=1
res

master task

a=1(copy)
&res
x,y

a=1(copy)
&x

task

thread 3

a=1(copy)
&y

• Defines the visibility of variable across 
parallel regions
– shared, private, firstprivate

and lastprivate clauses
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Hands-on: data-sharing + coarse grain 
synchronizations

• Which portions can be concurrent? 
• Which synchronizations are needed?
• Which are the data-sharing attributes?
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Hands-on: data-sharing + coarse grain 
synchronizations

Concurrent functions

Synchronization 
(x and y are shared variables!)

Data-sharings: 
• x and y are shared variables
• n is not shared among tasks
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Hands-on: data-sharing + fine grain 
synchronizations

• Which portions can be concurrent? 
• Which synchronizations are needed?
• Which are the data-sharing attributes?
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Hands-on: data-sharing + fine grain 
synchronizations

…

…

Synchronization 
(acc is a shared variable)

C[0] C[1] C[N-1]

acc



Mutual Exclusion
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atomic
• Ensures a specific storage location is accessed 

atomically
• Only specific operations are allowed
• Decorators specify the type of access (e.g., update, 

read, write,…)

critical
• Restricts execution of a structured block to a single 

thread at a time
• Can be named
• Might perform worse than atomic but is more 

flexible

#pragma omp parallel for \
shared(x, y, index, n)

for (i=0; i<n; i++) {
#pragma omp atomic update
x[index[i]] += work1(i);
y[i] += work2(i);

}

#pragma omp parallel shared(x, y) \
private(ix_next, iy_next)

{
#pragma omp critical(xaxis)
ix_next = dequeue(x);
work(ix_next, x);
#pragma omp critical(yaxis)
iy_next = dequeue(y);
work(iy_next, y);

}



Summary
Spawn parallelism

- parallel
- num_threads (clause)
- master/single

Distribute 
parallelism

Thread-centric - for
- section

Task-centric - task
- taskloop

Synchronize & 
Data-sharing

Memory 
fence

- barrier
- nowait (clause) 
- taskwait
- taskgroup
- depend (clause)

Memory 
consistency

- private
- firstprivate
- lastprivate
- shared

Mutual exclusion - atomic
- critical

Let’s develop CPS with 
OpenMP and so cope with the 
the performance 
requirements of the most 
advanced CPS functionalities!

Object
aggreg

Detection Tracking Hazard 
detection

Detection Tracking



Implementing CPS with OpenMP
• Page 1 of the OpenMP specification document says:

– Application developers are responsible for correctly using the 
OpenMP API to produce a conforming program
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CPS correctness 
cannot rely on magic!



Implementing CPS with OpenMP
• The complexity of parallel programming increases if guarantees on 

functional and non-functional correctness must be provided
1. Functional correctness (safety) ensure a correct system operation 

in response to its inputs guaranteeing system integrity
– Reliability: The property that ensures the system correctness
– Resiliency: The property that guarantees the system recovery if an 

unexcepted event impacts on system correctness, e.g., a soft transient 
error

2. Non functional correctness
– Time predictability: Reasoning about the timing behaviour of the parallel 

execution to ensure the execution completes within a given deadline
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Conclusions
• OpenMP provides a great expressiveness to describe parallelism, 

but…
– … puts all responsibility on functional correctness on the software 

developer (not always the best option, even for HPC…)
– … does not provide any support to guarantee time predictability
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Next lesson will analyse OpenMP from a functional 
correctness and time predictability perspective to enable 

its applicability on the development of CPS
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Outline
• Reliability and resiliency on parallel execution
• Task Dependency Graph (TDG)
• Time predictability

– OpenMP task scheduler
– Schedulability analysis 

• OpenMP Tracing
– Extrae and Paraver

• Model Driven Engineering
– Amalthea and OpenMP

• Conclusions
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Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW 
func 

HW 
func 

HW 
func 



Reliability: Parallel Execution and Correctness

1. Data races
– Occur when two threads access the same shared object and at least one 

of them is a write
– Data races result in undefined behavior

2. Wrong data sharing definition
– Occur when the visibility of the variables is not properly setup, resulting in 

an incorrect execution

3. Deadlocks
– Occur when the program is waiting for an event that cannot happen 

• Two threads are waiting in the same critical region
– Deadlock blocks the execution of the program forever
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Hands-on:
Parallel Correctness

int a=2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master 
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a)
x = a;
#pragma omp task shared(y) firstprivate(b)
y = b;

res = x+y;
}
printf(“res: %d\n”,res);

int a=2, b=2, res=0;
#pragma omp parallel shared(res,a,b)
#pragma omp master 
{

int x=0,y=0;
#pragma omp task shared(x) shared(a)
x = a;
#pragma omp task shared(y) shared(b)
y = b;
#pragma omp taskwait
res = x+y;

}
printf(“res: %d\n”,res);

• Which is the value of res
printed?

Race 
condition!

✓

#pragma omp taskwait
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int a = 2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master 
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a)
x = a;
#pragma omp taskwait
#pragma omp task shared(y) firstprivate(b)
y = b;
#pragma omp taskwait
res = x+y;

}
printf(“res: %d\n”,res);

int a = 2, b=2, res=0;
#pragma omp parallel firstprivate(res) firstprivate(a,b)
#pragma omp master 
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a)
x = a;
#pragma omp task shared(y) firstprivate(b)
y = b;
#pragma omp taskwait
res = x+y;

}
printf(“res: %d\n”,res);

• Which is the value of res
printed?

Hands-on:
Parallel Correctness

✓

Race condition!

shared(res)
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int a = 2, b=2, res;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master 
{

int x, y, factor=0;
#pragma omp task shared(x,factor) firstprivate(a)
{

x = a;
if(cond(x)) factor++;

}
#pragma omp task shared(y) firstprivate(b)
y = b;

factor++;
#pragma omp taskwait
res = (x+y)*factor;

}
printf(“res: %d\n”,res);

• Is this code functionally correct?

Hands-on:
Parallel Correctness

Race condition!



77

int a = 2, b=1, res;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master 
{

int x, y,factor=0;
#pragma omp task shared(x,factor) firstprivate(a)
{

x = a*a;
if(cond(x))

#pragma omp critical(factor_update)
factor++;

}
#pragma omp task shared(y) firstprivate(b)
y = b*b;

#pragma omp critical(factor_update)
{

factor++;
#pragma omp taskwait
res = (x+y)*factor;

}
}
printf(“res: %d\n”,res);

• What is wrong with this code?

Hands-on:
Parallel Correctness

Deadlock!
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int a = 2, b=1, res;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master 
{

int x, y,factor=0;
#pragma omp task shared(x,factor) firstprivate(a)
{

x = a*a;
if(cond(x))

#pragma omp critical(factor_update)
factor++;

}
#pragma omp task shared(y) firstprivate(b)
y = b*b;

#pragma omp critical(factor_update)
factor++;

#pragma omp taskwait
res = (x+y)*factor;

}
printf(“res: %d\n”,res);

Hands-on:
Parallel Correctness

✓
• The usage of critical mutex is 

not recommended!
• If needed, better use atomic



Task Dependency Graph (TDG)
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#pragma omp parallel
#pragma omp master
{

int x,y;
#pragma omp task depend(out:x,y) shared(x,y) // T1
{ f1(&x,&y); }
#pragma omp task depend(in:x) firstprivate(x) // T2
{ f2(x); }
#pragma omp task depend(in:y) firstprivate(y) // T3
{ f3(y); } 

}

1 Vargas, et.al. A Lightweight OpenMP Run-time for Embedded Systems, in ASP-DAC 2016; 
Vargas, et.al., OpenMP and Timing Predictability: A Possible Union?, in DATE 2015

A representation of the parallel nature of a 
given OpenMP region, extracted by means of 
compilation and runtime methods 1
• Includes all the information for functional and 

non-funcional correctness
– Parallel units and synchronization

dependencies
– Liveness analysis of variables and data-

sharings involved in the parallel execution
• Independent from the targeted parallel 

platform (but can include HW dependent 
information)
– Execution characterisation of parallel units 

(e.g., time, energy, memory behaviour)

T1

T2 T3
yx

mas
ter

firstprivate(y)firstprivate(x)

shared(x,y)
live vars: x,y

live vars: ylive vars: x

task creation



Task Dependency Graph (TDG)
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Fine-grain synchronization and data movement
to accelerators

Liveness analysis for race condition detection

Execution characterisation of tasks on a given
HW (platform-dependent)

1 Vargas, et.al. A Lightweight OpenMP Run-time for Embedded Systems, in ASP-DAC 2016; 
Vargas, et.al., OpenMP and Timing Predictability: A Possible Union?, in DATE 2015

T1

T2 T3
yx

mas
ter

firstprivate(y)firstprivate(x)

shared(x,y)
live vars: x,y

live vars: ylive vars: x

task creation

A representation of the parallel nature of a 
given OpenMP region, extracted by means of 
compilation and runtime methods 1
• Includes all the information for functional and 

non-funcional correctness
– Parallel units and synchronization

dependencies
– Liveness analysis of variables and data-

sharings involved in the parallel execution
• Independent from the targeted parallel 

platform (but can include HW dependent 
information)
– Execution characterisation of parallel units 

(e.g., time, energy, memory behaviour)



TDG and Functional Correctness1
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T2T1

shared(res)
firstprivate(a,b) 

mas
ter

shared(x)
firstprivate(a)

task creation
int a = 2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master 
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a) // T1
x = a;
#pragma omp task shared(y) firstprivate(b) // T2
y = b;
#pragma omp taskwait
res = x+y; // B1

}
printf(“res: %d\n”,res);

task
wait

B1

shared(y)
firstprivate(b) 

live vars: x live vars:y

live vars: res,x,y

live vars: res

live vars: y,blive vars: x,a

1 Royuela, Duran, Liao, Quinlan, Auto-scoping for OpenMP tasks, in IWOMP 2012 
2 Lin, Static nonconcurrency analysis of openmp programs, in IWOMP 2008
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TDG and Functional Correctness

T2T1

shared(res)
firstprivate(a,b) 

mas
ter task creation

int a = 2, b=2, res=0;
#pragma omp parallel shared(res) firstprivate(a,b)
#pragma omp master 
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a) // T1
x = a;
#pragma omp task shared(y) firstprivate(b) // T2
y = b;
#pragma omp taskwait
res = x+y; // B1

}
printf(“res: %d\n”,res);

B1

live vars: x live vars:y

live vars: res,x,y

live vars: res

x and y are write/read without a predefined order

shared(x)
firstprivate(a)

shared(y)
firstprivate(b) 

live vars: y,blive vars: x,a



83ACACES 2021, Fiuggi, Eduardo Quiñones

TDG and Functional Correctness

T2T1

firstprivate(res)
firstprivate(a,b) 

mas
ter task creation

int a = 2, b=2, res=0;
#pragma omp parallel firstprivate(res) firstprivate(a,b)
#pragma omp master 
{

int x=0,y=0;
#pragma omp task shared(x) firstprivate(a) // T1
x = a;
#pragma omp task shared(y) firstprivate(b) // T2
y = b;
#pragma omp taskwait
res = x+y; // B1

}
printf(“res: %d\n”,res);

task
wait

B1

live vars: x live vars:y

live vars: res,x,y

live vars: resThe liveness analysis and the data-
sharing of  res does not match!

shared(x)
firstprivate(a)

shared(y)
firstprivate(b) 

live vars: y,blive vars: x,a
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Hands-on: TDG

#define N 2

int a[N], b[N];
#pragma omp parallel shared(a,b)
#pragma omp master 
{

for(int i=0; i<N; i++) {
// T1
#pragma omp task shared(a) firstprivate(i) \

depend(out:a[i])
a[i] = init(i);
if(!(i%2))

// T2
#pragma omp task shared(a,b) firstprivate(i) \

depend(in:a[i], out:b[i])
b[i] = compute(a[i]); {

}
#pragma omp taskwait

}

• How does the TDG look like?

T1.2T1.1

shared(a,b) 

mas
ter

task
wait

shared(a)
firstprivate(i) 

live vars: a[0]

live vars: a[1],b[1]

live vars: a,b

T2.1
shared(a,b)
firstprivate(i) 

Live vars: a[1]

live vars: b[1]

Live vars: a[0],i=0; a[1],i=1



Examples of OpenMP-TDGs
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3D Path Planning 
(avionics)

Infra-red sensor pre-
processing (space)

Pedestrian detector 
(automotive)

Cholesky Factorization
(HPC)



Examples of OpenMP-TDGs
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154084

144484
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106084

96484

86884

77284
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58084

48484

38884

29284
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384243

374643

365043

355443

345843

336243

326643

317043

307443

297843

288243

278643

269043

259443

249843
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230643

221043

211443

201843

192243

182643

173043

163443

153843

144243

134643

125043

115443

105843

96243

86643

77043

67443

57843

48243

38643

29043

19443

15122

14882

14642

14402

14162

13922

13682

13442

13202

12962

12722

12482

12242

12002

11762

11522

11282

11042

10802

10562

10322

10082

9841

3D Path Planning 
(avionics)

Infra-red sensor pre-
processing (space)

Pedestrian detector 
(automotive)

Cholesky Factorization
(HPC)



Resiliency

87ACACES 2021, Fiuggi, Eduardo Quiñones

• The OpenMP specification does not 
include error handling mechanisms to 
safely recover from errors 
– Relies on those provided by the base 

programming language, e.g., 
exceptions in case of C++

• OpenMP includes directives (cancel
and cancellation point) to 
cancel the parallel execution of 
parallel, sections, for and 
taskgroup

std::exception *ex = NULL;
#pragma omp parallel shared(ex)
{

#pragma omp for
for (int i=0;i<N;i++){

try {
iteration();

}
catch (std::exception *e) {

#pragma omp atomic write
ex = e;
#pragma omp cancel for

}
}
if (ex)

#pragma omp cancel parallel
}
if (ex) 

handle_exception();



Time predictability
• The timing behaviour of parallel execution depends on 

the allocation of parallel units to computing resources
1. The parallel structure of the application

• The Task Dependency Graph (TDG)

2. The scheduler(s) responsible of allocating parallel units 
(OpenMP tasks) to computing resources (cores/acceleration 
devices)
• The execution profile of the parallel units into the computing 

resources
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Time predictability: Task Scheduler

• The OpenMP framework 
includes multiple levels of 
scheduling that dificults the 
time predictability
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Team of OpenMP Threads
(#pragma omp parallel num_threads)

OpenMP Task 
(#pragma omp task)

OS Threads
(pool of threads)

HW Threads/HW Cores

Ready tasks queue

scheduling decisions



Time predictability: Task Scheduler
• The OpenMP Thread Affinity

allows fixing the OpenMP 
threads of a team to the 
available HW threads on a 
device (places)
– OMP_PLACES
– OMP_PROC_BIND

• The parallel execution is only 
managed by the OpenMP task 
to OpenMP thread scheduler 
increasing time predictability
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Team of OpenMP Threads
(#pragma omp parallel num_threads)

OpenMP Task 
(#pragma omp task)

OS Threads
(pool of threads)

HW Threads/HW Cores

Ready tasks queue

scheduling decisions



The OpenMP Scheduler
• Given two tasks with different priorities, there exist

three preemption strategies
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HP τ1 

LP	τ2 

Fully	preemp*ve	scheduling	

HP	τ1 

LP	τ2 

Non-preemp)ve	scheduling	

HP	τ1 

LP	τ2 

Limited	preemp*on	
(coopera*ve)	scheduling		



The OpenMP Scheduler
• The OpenMP tasking execution model defines a limited preemption 

scheduling strategy
– OpenMP task-based program can only be preempted at predefined points of 

the execution (a.k.a. preemption points or task scheduling points)
• Task creation and completion, taskwait, taskgroup
• Tasks cannot be preempted at any other point and must execute until completion

– Tasks includes a priority clause that can be used by the scheduler

• The actual implementation of the scheduler included in the runtime 
is implementation-defined
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The OpenMP Task Scheduler
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#pragma omp parallel num_threads(1)
#pragma omp master 
{

for(int i=0;i<2;i++) {
#pragma omp task priority(3) // t1
{ … }
#pragma omp task priority(2) // t2
{ … }
#pragma omp task priority(1) // t3
{ … }

}
}

t3 t3 t2 t2 t1 t1

t1 t2 t3

core 0

- priority

+ priority

t1 t2 t3

TDG (order of creation):

(a possible) order of execution:



Time Predictability: TDG + Scheduler
• The execution time of an OpenMP-

TDG is determined by:
1. The execution of OpenMP tasks 

within the critical path
2. Interferences of the rest of OpenMP 

tasks on the critical path
3. Interferences on HW/SW resources 

due to the simultaneous execution of 
OpenMP tasks 
• Not addressed in this course!
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t1:5

t3:3

t2:3

t6:2

t7:2

t5:4

t4:1

t8:1

critical path
interference

tasks



Time Predictability: TDG + Scheduler
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t1 t3 t5 t8
t2 t7 t6 t4

t1 t3 t6 t5 t8
t2 t7 t4

core 0

core 1

core 0

core 1

Shortest possible execution time
(critical path)

t1:5

t3:3

t2:3

t6:2

t7:2

t5:4

t4:1

t8:1

critical pathinterference
tasks

Interefence

Execution time increment
due to intereference



Schedulability Analysis
• Determines a response time upper bound (Rub) of an 

OpenMP-TDG under a work-conserving scheduler1

– An OpenMP application is schedulable if Rub ≤ Deadline (D)

𝑅!" = 𝑙𝑒𝑛 𝐺 +
1
𝑚 (𝑣𝑜𝑙 𝐺 − 𝑙𝑒𝑛(𝐺)) ≤ 𝐷

Interferences of the 
remaining work

Divided among 
processing units (cores)

Critical path
• G: TDG annotated with execution 

times of tasks
• len(G): critical path
• vol(G): sequential execution time
• D: deadline

1 A. Melani, et.al., A static scheduling approach to enable safety-critical OpenMP applications, In ASP-DAC 2017

t1:5

t3:3

t2:3

t6:2

t7:2

t5:4

t4:1

t8:1



Rub of Real OpenMP applications
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Pre-processing sampling 
Pedestrian detector Cholesky factorization

• Executed using 16-cores only of the Intel® Xeon Platinum
1. Improved performance parallel vs. sequential
2. Average vs. max. observed execution times
3. Maximum observed time over Rub

# OpenMP tasks (TDG nodes)# OpenMP tasks (TDG nodes)# OpenMP tasks (TDG nodes)



Functions included within the 
task construct

Understanding Parallel Execution
• Is schedulability analysis sufficient to understand parallel execution? NO!

– No information about the parallel execution efficiency from a programming perspective
– No information about the usage of computing resources

ACACES 2021, Fiuggi, Eduardo Quiñones

Pedestrian detector

# OpenMP tasks (TDG nodes)

98



Understanding Parallel Execution
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Based on how data is collected Based on how data is stored
• Instrumentation:

- Captures information based on events 
(TDG events!)

- Requires modification of the application 
manual or automatic

- Reports exact data

• Sampling:
- Captures information periodically
- Does not require modifying the 

application
- Reports relative data

• Tracing:

- Stores information in a timeline basis

- Holds exact data 

- A profile can be derived from the trace

• Profiling:

- Stores information in counters

- Holds summarized data

- A trace cannot be derived from a profile



A Multispectal Imaging of the Parallel Execution
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Reality

Different representations of the 
same reality containing different 
information

Tools for
observing the

reality



A Multispectal Imaging of the Parallel Execution
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Extrae

+Reality

Sequence of time-
stamped events (trace)

Tools for
observing the

reality

Multi-core
(Host)

TPU/GPU
(Accelerator)

FPGA
(Accelerator)

Memory

Peripherals

HW 
func 

HW 
func 

HW 
func 

Different representations of the 
same reality containing different 
information



Understanding OpenMP: Extrae1

• A dynamic instrumentation package to trace parallel programs
• Capable of automatically capturing the activity of the parallel runtimes

– No need to access the source code, recompiling, relinking, or having prior 
knowledge of application internals structure

• Allows reasoning about the execution behaviour of the parallel 
programing model
– OpenMP support (other supported programming models are MPI, pthread, 

etc.)
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1 Extrae means Extract in spanish. Available here: https://tools.bsc.es/extrae



A Multispectal Imaging of the Parallel Execution:
Extrae + Paraver1
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for (int i=0; i<3; i++) parallel
regions

task
creation

task
execution

thread id

Functions
included within

the task
construct

1 Paraver means for seeing in spanish. Available here: https://tools.bsc.es/paraver



A Multispectal Imaging of the Parallel Execution:
Extrae + Paraver
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Task
execution

IPC 
(Instructions 

per Cycle)

L1 miss 
ratio

Range:
0.1 to 2.0

Range:
1% to 15%

Parallel functions view
(Parallel programming level)

Hardware counters 
information view
(computing resources 
usage level)



Supporting multiple CPS functionalities in OpenMP

• CPS are composed of multiple functionalities (a.k.a. real-time tasks) 𝝉𝒌
(TDG 𝑮𝒌), each characterized by a period (T), a deadline (D) and a priority

• The limited preemption strategy and the priority clause supported by 
OpenMP allows to analyse CPS with multiple functionalities implemented 
with OpenMP
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Supporting multiple OpenMP functionalities in CPS
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Task 
Scheduling 
Points

𝝉𝟐 𝝉𝟐

Lower priority task
interference

Higher priority task
interference

𝝉𝟏

𝝉𝟑 𝝉𝟑

Period

+ priority

- priority

Task under analysis
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Supporting multiple OpenMP functionalities in CPS
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Task 
Scheduling 
Points

𝝉𝟐 𝝉𝟐

Lower priority task
interference

Higher priority task
interference

𝝉𝟏

𝝉𝟑 𝝉𝟑

Period

6

2

5
3

2

!!	
3

2

1
5

!!

5

2

3

2

1

4

1
0 !!

#pragma omp parallel 
#pragma omp single nowait
{ 
while (1) {
if (get_current_clock_t() == period_1)
#pragma omp task priority(1)
{ 𝝉𝟏;
#pragma omp taskwait

} 
if (get_current_clock_t() == period_2)
#pragma omp task priority(2)
{ 𝝉𝟐;
#pragma omp taskwait

}
if (get_current_clock_t() == period_3)
#pragma omp task priority(3)
{ 𝝉𝟑;
#pragma omp taskwait

}
}

}



Schedulability Analysis
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𝑅"#$ = 𝑙𝑒𝑛 𝐺" +
1
𝑚 𝑣𝑜𝑙 𝐺" − 𝑙𝑒𝑛 𝐺" +

1
𝑚 𝐼"

%& + 𝐼"
'& ≤ 𝐷"

Critical path
Intra-task interference

(self-interferences)

Higher priority tasks
interference

Lower priority tasks
interference
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#pragma omp parallel 
#pragma omp single nowait
{ 
while (1) {
if (get_current_clock_t() == period_1)

#pragma omp task priority(1)
{ 𝝉𝟏;

#pragma omp taskwait
} 

if (get_current_clock_t() == period_2)
#pragma omp task priority(2)
{ 𝝉𝟐;

#pragma omp taskwait
}

if (get_current_clock_t() == period_3)
#pragma omp task priority(3)
{ 𝝉𝟑;

#pragma omp taskwait
}

}
}

1 M. A. Serrano, et.al., An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-based Global Fixed Priority Scheduling, 
In ISORC 2017

(1)



Schedulability Analysis
CPS composed of three concurrently OpenMP functionalities
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Functionality 𝝉𝒊 # nodes P 𝑻𝒌 (ms) 𝑫𝒌 (ms)

Pre-processing sampling 𝜏& 193 1 410 410

Person detector 𝜏' 1299 2 780 780

Cholesky factorization 𝜏( 819 3 400 400

109

Pre-processing sampling 
(highest priority)

Pedestrian detector
(medium priority)

Cholesky factorization
(lowest priority)

(24-core Intel Xeon)



CPS and OpenMP
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from a functional and timing perspective”

Cyber-Physical System (CPS)
• So, can we now 

develop the most 
advanced CPS 
functionalities with 
OpenMP?...

• … Not Really



Model Driven Engineering and OpenMP
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Bridge 
the gap 1. Compiler and run-time parallel frameworks that

guarantee system correctness and exploit the
performance capabilities of parallel architectures

2. Synthesis methods for an efficient generation of 
parallel source code, while keeping non-functional
and composability guarantees

Sensors ActuatorsMDE
(e.g. CAPELLA, 

AMALTHEA, 
AUTOSAR)

Logic 
Controller 

Run-time 
parallel

frameworks

Parallel 
Programming 

Models
(e.g. OpenMP, 

OpenCL, 
CUDA, COMPSs)

Parallel
Execution 

Model

Parallel Units

Parallel Untits

Parallel Units

1. Construction of complex systems
2. Formal verification of functional and non-functional

requirements with composability features
3. Correct-by-construction paradigm by means of 

code generation

✓
?



AMALTHEA/AUTOSAR and OpenMP 
• Automotive MDE highly inspired in 

AUTOSAR developed by Bosch
– Defacto standard for the development 

of automotive SW
– Used by most of OEM and TIER1 and 

TIER2 automotive companies

• Multiple abstraction layers to 
define CPS SW components
– AMALTHEA task
– Runnable
– Stimulus

• Compatibility between the 
AMALTHEA and OpenMP execution 
models
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Process/Task Activity 
Graph

Stimulus

[0..*]
[0..*]

Runnable

Event

Runnable Sequencing 
Constraint

Runnable 
Group

[2..*]

[1..*]

Event 
Chain

[1..1] stim
ulus

[1..1] response

[1..*]

Units of work
Ordering

Inside a runnable: 
Transparent to AMALTHEA



AMALTHEA/AUTOSAR and OpenMP
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#pragma omp parallel
#pragma omp single

#pragma omp task priority(x)
{

#pragma omp task depend(out: Image)
run_read_image ("") ;
#pragma omp task depend(inout:Image)
run_convert_image ("") ;
#pragma omp target depend(in:Image) \

depend(out:ResultsA)
run_analysisA ("");
#pragma omp target depend(in:Image) \

depend(out:ResultsB)
run_analysisB ("");
#pragma omp task depend(in:ResultsA,ResultsB)
un_merge_results ("") ;
#pragma omp taskwait

}

AMALTHEA DSML Source-code transformation 1

2

3 4

5



AMALTHEA and OpenMP
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Setup Speedup

ODAS
2-cores 1.88

4-cores 2.62

WATERS 4-cores + GPU 6.21

NVIDIA Jetson 
TX2 board 
with a GPU, a 
4-core ARM 
CPU

ODAS

WATERS

ampere.euproject.eu



Conclusions
• The TDG (extracted by means of compiler and/or runtime 

methods) includes all the information needed to 
– Reason about the timing behaviour of OpenMP programs and so 

derive timing guarantees
• The use of tracing tools (e.g., Extrae and Paraver) are needed to incorporate 

the required information and further understand the execution behaviour
• The OpenMP execution model implements a limited preemption scheduling 

strategy upon which schedulability analysis can be built
– Implement compiler mechanisms to guarantee functional correctness 

by detecting (and correcting) race conditions
• OpenMP is compatible with the AMALTHEA DSML, facilitating 

its usage in the automotive domain
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Challenges we are addressing…
1. Better characterisation of the parallel execution

– Contention on shared resources due to parallel execution
– Overhead introduced by the run-time mechanism
– Compiler and run-time mechanism to ensure no data-races and deadlocks

2. Modification of the OpenMP standard to better capture 
functional/non-functional requirements
– Error handling mechanisms to safely recover the parallel execution from 

errors
– Event-driven execution missing

3. Interoperability with different MDE
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Outline
• COMPSs framework

– Execution model and memory model
– Task model

• Reliability and resiliency
• Time predictability

– Static allocation heuristics
• A real CPS: a smart mobility use-

case
• Conclusions
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Compute Continuum 

 
D1.1 Use case requirement specification and definition    
Version 1.0  
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Figure 7: Wi-Fi access points are connected to the LAN switch at each stop. 

The following pictures show the different possible locations for edge and/or fog 
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b)) 
and cabinets at stops (figure (c)). 

(a)  

 

 

(b) 

 

                                     (c)  

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole 
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 

Tram StopStreetlight
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The block diagram of the ODAS use-case is depicted in Figure 
4. The use-case incorporates two main subsystems: the Sensor 
Data Fusion (SDF) and the AI Analytics (AI) components.   
The SDF component will be in charge of collecting a large mass 
of raw data from the multiple advanced sensors installed in tram 
vehicle, i.e., optical and thermal cameras, radars and LiDARs 
(light detection and ranging). Cameras are a very good tool for 
classifying objects (rails, signs vehicle, people...) through deep 
learning technologies; LiDAR and radar are good at estimating 
the position of objects around the vehicle. Each of these sensors 
has advantages and disadvantages depending on the operational 
scenarios, environmental and lighting conditions. For instance, 
backscattering from snowflakes or water droplets are sources of unwanted detections in automotive LiDARs, and 
cameras show limited performances in adverse weather conditions such as fog or rain. Many of the previous con-
straints can be minimized using specific sensor techniques which, on the other hand, increase the sensor cost. Using 
sensor data-fusion machinery for having a common homographic view of the objects will increase the performance 
of the sensor system keeping the cost in a range suitable to the application target. The AI component will incorporate 
machine learning (e.g., SVM) and deep learning (e.g., CNN, RNN) algorithms to identify and track objects along the 
tramway infrastructure and extract knowledge that will be displayed to the tram driver.  

 The two components will be distributed and executed in a COTS parallel 
and heterogeneous platform installed on-board tram vehicles, featuring 
multi-core SoC with FPGAs, GPUs and dedicated AI accelerators such as 
TPUs, capable of accelerating large matrix operations and perform mixed-
precision matrix multiply and accumulate calculations in a single operation. 
Moreover, the platform will host multiple standard hardware interfaces to 
ease the integration of the system into a wide range of operation conditions. 
Finally, the constrained environment in which the computationally inten-
sive functionalities will execute, imposes the need of using energy-
efficiency platforms with power envelopes lower than 30W.  

The THALIT use case will be verified in a real transportation environment of the Florence tramway network. To do 
so, a set of tram vehicles operating on Florence tramway lines will be equipped with sensors and related processing 
devices in order to demonstrate the performance capabilities and the fulfilment of non-functional requirements of the 
AMPERE ecosystem. As a result, ODAS will implement functionalities with different criticality level in terms of 
functional safety and strict time constraints due to the real operation conditions with tram vehicles moving in an 
urban environment with traffic mixed with cars and pedestrians (see Figure 5). 

AMPERE Use Case Key Performance Indicators (KPIs) 
Table 2. Key Performance Indicators (KPI) of AMPERE use-cases. 

Use case KPI Measure 

Intelligent Pre-
dictive Cruise 
Control (PCC) 

(BOS) 

Satisfy the high computation demands of PCC algorithms while 
guaranteeing the safety properties of the powertrain control and 
ACC functionalities.  

High system utilization (> 
90%) with provable safety 
properties  

Maintain the functional properties of the PCC when integrating 
further synthetic applications, to demonstrate the compositional 
integration capabilities of the AMPERE ecosystem. 

Maintain exactly the same 
functional properties 

Providing a reduced development effort for integrating new 
functionalities in an existing system, by coupling the AMPERE 
ecosystem with existing automotive standards and tools. 

30% reduction of develop-
ment efforts 

Obstacle Detec-
tion and 

Avoidance Sys-
tem (ODAS) 
(THALIT) 

Reduce the development and integration costs of the ADAS 
functional critical software modules by employing the 
AMPERE ecosystem starting from the system design phase. 

< 20% of development 
and integration costs 

Improve the object detection capability and reduce the false 
alarms rate in critical environmental conditions (fog, rain, at 
night) by combining AMPERE with existing on-board systems.  

- > 20% objects detected  
- < 15% False alarms rate 
 

Reduce the energy needs of the ADAS component while retain-
ing functional safety targets according to the standards.  

> 20% reduction in com-
puting energy needs  

Figure 5: Tramway at Florence 
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COMPSs1
• Programming distribute framework highly inspired in the OpenMP tasking 

model
• Supports Python, Java and C++

– For Python and C++, the code is annotated to describe asynchronous procedures 
(task) and the data dependencies among them

– For Java, the model does not require to use any special API call, pragma or 
construct in the application

• Agnostic of the underlying distributed computing infrastructure
– Programs do not include any infrastructure details, making applications portable

• The memory and file system space is abstracted, giving the illusion of a 
single memory space and file system
– The runtime takes care of all the necessary data transfers.
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Execution Model: Master-Worker
• The COMPSs runtime is composed of

– Master, responsible of the execution of 
the main program and the distribution of 
the asynchronous tasks, honoring task 
data dependencies

– Worker, responsible of the execution of 
the COMPSs tasks on the different 
computing resources as described in the 
resource.xml file, and the data transfer 
among workers
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• The master maintains the memory consistency and distributes the 
asynchronous tasks across the workers

Memory Model and Parallel distribution: 
Task Model
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@task(x=OUT)
def f1(i):

…
return x

@task(x=IN)
def f2(x):

…
def main():

x=f1(i)
f2(x)

f1

f2

Resource 2

1. Data renaming of 
WaR and WaW

2. TDG generation

3. Task 
Scheduling

4. Data 
Transfer

Resource 3

f1

f2

x

Master
Workers

(resource.xml) 

Resource 1

ma
in

i N
ative 

Linux
cloud

Native 
Linux
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Memory Model and Parallel distribution: 
Task Model
• The COMPSs tasking model is similar to 

the OpenMP tasking model…
– Oblivious of the underlying distributed physical 

layout
– Structured and unstructured data- and task-

parallelism
– Representative construct: @task (python 

decorator)
– Coarse- and fine-grain synchronization: 

compss_wait_on (COMPSs runtime call) 
and IN and OUT data dependencies (python 
decorator)
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worker

master

f1 f1

@task(x=OUT)
def f1(i):

return i*2

@task(x=IN)
def f2(x):

return x+2
def main():

for i in [1..2]
x=f1(i)
y=f2(x)   
compss_wait_on(y)

worker f2 f2

main main main

compss_wait_on compss_wait_on



Memory Model and Parallel distribution: 
Task Model

• … but not the same!
– Synchronization directives implies data 

transfer between workers and master and 
workers
• Input/output data is serialized/deserialized and 

stored in disk

– There are not shared variables
– COMPSs tasks are “stateless”

• State across multiple executions of the same task 
must be included as an INOUT dependency
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worker

master

f1 f1

x=2 x=4

i=1 i=2

@task(x=OUT)
def f1(i):

return i*2

@task(x=IN)
def f2(x):

return x+2
def main():

for i in [1..2]
x=f1(i)
y=f2(x)   
compss_wait_on(y)

worker f2 f2

y=4 y=6

main main main

compss_wait_on compss_wait_on
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Hands-on: COMPSs TDG 
@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN)
def f2(i):

y=i+2
return y

@task(y=IN)
def f3(x,y):

print(x+y)
def main():

x=f1(1)
y=f2(x)
compss_wait_on(y)
f3(x,y)

@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN,y=OUT)
def f2(i):

y=i+2
return y

@task(y=IN,x=IN)
def f3(x,y):

print(x+y)
def main():

x=f1(1)
y=f2(x)
f3(x,y)

• Are these two source-codes 
equivalent from a functional
and parallel perpective? 

• YES and NO



126ACACES 2021, Fiuggi, Eduardo Quiñones

Hands-on: COMPSs TDG 
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f3

wait

@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN)
def f2(i):

y=i+2
return y

@task(y=IN)
def f3(x,y):

print(x+y)

def main():
x=f1(1)
y=f2(x)
compss_wait_on(y)
f3(x,y)

master workers

i=1

x=1

y=3

y=3 x=1

4

@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN,y=OUT)
def f2(i):

y=i+2
return y

@task(y=IN,x=IN)
def f3(x,y):

print(x+y)

def main():
x=f1(1)
y=f2(x)
f3(x,y)

ma
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f1

f2

f3

master workers

i=1

x=1

y=3 x=1

4



Implementing CPS with COMPSs

• The complexity of parallel programming increases if guarantees on 
functional and non-functional correctness must be provided

1. Functional correctness (safety) ensure a correct system operation 
in response to its inputs guaranteeing system integrity
– Reliability: The property that ensures the system correctness
– Resiliency: The property that guarantees the system recovery if an 

unexcepted event impacts on system correctness, e.g., a soft transient 
error

2. Non functional correctness
– Time predictability: Reasoning about the timing behaviour of the parallel 

execution to ensure the execution completes within a given deadline
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Copy-paste from 
the OpenMP Lesson!



Reliability and Resiliency
1. Data races

– Occur when two workers access to the same memory object or file and at least one 
of them is a write

– A memory object or file written by one worker cannot be read by another worker if 
no synchronization is done

– Data races result in undefined behavior

2. Deadlocks
– COMPSs does not include mutual exclusion

3. Error handling mechanisms
– COMPSs does not include them to safely recover the parallel execution from errors 

• Relies on those provided by the base programming language, i.e., exceptions in case of Python 
or C++
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Data Races and TDG
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f1

f2

@task(i=IN,x=OUT)
def f1(i):

x=i*2
return x

@task(i=IN)
def f2(i):

y=i+2
return y

def main():
x=f1(1)
y=f2(x)
compss_wait_on(y)
print(y)

master workers

i=1

x=1

y=3

?

print(y)
The COMPSs framework raises an 
exception when accessing y value!



Time predictability
• The timing behaviour of parallel execution depends on 

the allocation of parallel units to computing resources
1. The parallel structure of the application

• The Task Dependency Graph (TDG)
2. The scheduler responsible of allocating COMPSs tasks to 

workers
• The execution profile of the parallel units into the computing 

resources
• The cost of serialization/deserialization and data transfers among 

computing resources
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Time predictability
• Achivied by means of static allocation of COMPSs tasks to 

workers due to the complexity and heterogenity of the 
compute continuum infrastructure (including edge and cloud 
resources)
– Schedulability analysis would result too pessimistic due to 

communication costs
• Allocation heuristics tries to minimize the computation/ 

communication costs 
– Based on the parallel nature of the TDG and the execution time 

characterisation of tasks and data transfers across the compute
– Extrae and Paraver supported
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Time predictability:
Static Allocation Heuristics

• Heuristics based on successors
– Largest Number of Successors (LNS)

• Order of allocation of ready tasks: 
3(R2),4(R3),2(R1)

• Heuristics based on processing time
– Shortest Processing Time (SPT)

• Order of allocation of ready tasks: 
2(R2),4(R3),3(R1)
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Ready 
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Time predictability: 
Static Allocation Heuristics (Example) 
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Object
aggreg

Detection Tracking Hazard 
detection

Detection Tracking

def get_detected_objects (cam_id):
return DNN_detect_obj(cam_id)

def tracker(obj_list, track_obj):
return track(obj_list, track_obj)

def deduplicator(track_obj):
return dedupl_obj(track_obj)

def create_data_model(dedupl_obj):
snapshot = model.create(dedupl_obj)
return snapshot

def federate_to_cloud(snapshot, dC_bcknd):
snapshot.federate(backend_to_federate)

## Main function ##
while True:

for i, camid in cameras:
obj_list = get_detected_objects (camid)
track_obj[i] = tracker(obj_list, track_obj[i])

dedupl_obj = deduplicator(track_obj)
snapshot = create_data_model(dedupl_obj)
federate_to_cloud(snapshot, dC_bcknd)



Time predictability: 
Static Allocation Heuristics (Example) 
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Object
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detection

Detection Tracking

@task(returns=list)
def get_detected_objects (cam_id):

return DNN_detect_obj(cam_id)

@task(obj_list=IN, track_obj=IN, returns=list)
def tracker(obj_list, track_obj):

return track(obj_list, track_obj)

@task(obj_list=COLLECTION_IN, returns=list)
def deduplicator(track_obj):

return dedupl_obj(track_obj)

@task(dedupl_obj=IN, model = IN)
def create_data_model(dedupl_obj):

snapshot = model.create(dedupl_obj)
return snapshot

@task(snapshot=IN, dC_bcknd = IN)
def federate_to_cloud(snapshot, dC_bcknd):

snapshot.federate(backend_to_federate)

## Main function ##
while True:

for i, camid in cameras:
obj_list = get_detected_objects (camid)
track_obj[i] = tracker(obj_list, track_obj[i])

dedupl_obj = deduplicator(track_obj)
snapshot = create_data_model(dedupl_obj)
federate_to_cloud(snapshot, dC_bcknd)



Execution time characterisation

135

data transfer times
COMPSs task 

execution times

Resource 1

Resource 2

Resource N

…

Information extracted 
from Extrae + Paraver!



Static Allocation Heuristics 
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Response time Upper Bound (Rub)

task deadlines

ü Heuristics to minimize end to end response time



Static Allocation Heuristics 
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Static Allocation in a 
Dynamic Environment 
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v2 v5

v4 v6 v8

workflow response time

v7 v10v9

new response time (after rescheduling)

ü Re-scheduling based on resource availability at runtime

Resource 1

Resource 2

Resource N

…



A Real CPS: A Smart Mobility TDG
• Extract valuable knowledge from a distributed sensing infrastructure, 

executed on a distributed computing infrastructure
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detection

Detection Tracking

class-project.eu
(City of Modena)

elastic-project.eu
(City of Florence)

ACTIVITY, LOCATION

Smart City Use-case

� Deployed on the Modena Automotive Smart Area 
(MASA) in the city of Modena (Italy) 
- 1 Km2 urban area with connectivity that enables IoT 

devices to exchange information
- Three connected Maserati cars equipped with sensors 

(cameras and LiDAR) and V2I communication

� From the city perspective, an intelligent traffic 
management
- “Green routes” for emergency vehicles
- Smart valet parking system

� From the car perspective, advanced driving assistance 
systems
- Trajectory prediction and collision detection

9



A Real CPS: A Smart Mobility TDG
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A Real CPS: A Smart Mobility TDG
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mobility supervisor, urban traffic control systems, etc.) and other networks (e.g. 
Internet, private cloud at PCC, etc.) that are relevant to the project can be configured 
at the PCC and/or though the aforementioned MAN, depending on user and/or 
systems requirements. Figure 5 shows the rack hosting the core components. 

 
Figure 5: Core components of the public access Wi-Fi network are hosted in a rack at 

the control centre. 

2.1.2 Backbone network 

The backbone network relies on a fibre optics ring, connecting the core and switches 
installed at each stop. The backbone network features a fail-safe configuration and is 
currently operated at 1 Gbps. The layout of the backbone network is shown below. 

 
Figure 6: A fibre optics ring connects the control centre and the stops. 

2.1.3 Access network 

The Wi-Fi access network supports the 802.11a/b/g/n protocols to enable 
connection of common user devices; to this end, a public SSID is published and users 
gain access to the Internet through a captive portal. Moreover, hidden SSIDs are 
configured on the network. A typical configuration of the access network comprises 
one or more access points connected to the LAN switch installed in the cabinet at the 
tramway stop. The typical layout of the access network at a single stop is shown 
below. 
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Figure 7: Wi-Fi access points are connected to the LAN switch at each stop. 

The following pictures show the different possible locations for edge and/or fog 
devices, such as cabinets next to traffic lights (figure (a)), lighting poles (figure (b)) 
and cabinets at stops (figure (c)). 

(a)  

 

 

(b) 

 

                                     (c)  

Figure 8: (a) Cabinet hosting devices next to the traffic lights; (b) a lighting pole 
hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 
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hosting a Wi-Fi access point and a video camera; (c) cabinet at a stop. 

Access points feature a 1 Gbps copper LAN port with PoE output, enabling 
connection of further devices (e.g. sensors, cameras, etc.) – this could ease the 
installation of additional devices required for the implementation of the ELASTIC use 
cases. 
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Conclusion
• COMPSs provides a task-based framework for the 

development of complex data-analytics workflows
– Similar principles of OpenMP
– Time predictability is achieved by means of static 

allocation heuristics
• The use of tracing tools (e.g., Extrae and Paraver) are needed to 

incorporate the required information and further understand the 
execution behaviour

• Currently being applied in real CPS projects
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Home-take Message

1. CPS requires parallel computation to cope with the performance 
requirements of the most advanced functionalities, and…

2. … current task-based parallel programming models allows to reasoning
about functional correctness and time predictability while removing from 
developers the responsibilty of managing the complexity of parallel 
execution

3. Unfortunately, reasoning is not enough… it must be guaranteed!!!
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VERY INTERESTING RESEARCH IS 
STILL PENDING!
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