LL“J"U

A Software Architecture for Extreme-Scale
Big-Data AnalyticS in Fog CompuTIng Ecosystems

D3.1 Software architecture requirements
and integration plan

Version 1.0

Document Information

Contract Number 825473

Project Website https://elastic-project.eu/
Contractual Deadline M6, May 2019

Dissemination Level PU

Nature R

Author(s) Eduardo Quinones, Sara Royuela (BSC)

Usman Wajid, John Beattie (ICE); Cristévao Cordeiro
Contributor(s) (SIX); Cristina Zubia (IKL); Luis Miguel Pinho, Luis
Nogueira, Antonio Barros (ISEP)

Reviewer(s) Cristovao Cordeiro (SIX)

software development ecosystem, software

Keywords architecture, integration plan

Notices: The ELASTIC project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the

grant agreement N° 825473.

© 2019 ELASTIC. A Software Architecture for Extreme-ScalLe Big-Data AnalyticS in Fog
CompuTing ECosystems. All rights reserved.

D3.1 Software architecture requirements and integration plan

LLndl'U

Version 1.0
Change Log
Version | Author Description of Change
Eduardo Quinones, Sara .\
V0.1 Royuela (BSC) Initial Draft
V0.2 Usman Wajid, John Updated information about
’ Beattie (ICE) distributed data analytics
V0.3 Jurgen Assfalg (FLO) Small corrections
V0.4 Cristovao Cordeiro (SIX) | Nuvla and NuvlaBox description
. . KonnektBox, Monitor and Data Router
V0.5 Cristina Zubia (IKL) description
V0.6 h%lsuhé}gsekz]tg:?é Iél;]rsros Small corrections, NFR technical
’ S ’ requirement and NFR tool
(ISEP)
V1.0 Eduardo Quinones (BSC) | Ready for submission to the EC
(Final Change Log entries reserved for
releases to the EC)

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

Table of contents

(01 T g F= T o N 2
1. EXECULIVE SUMMAIY ..ottt e eii e eeeeteeeeeanneeeeeennneeeeannnes 5
2. The ELASTIC Software Development Ecosystem.......ccceviiiiiiiiiiiiiiineennnnnns 5
2.1 0T Y = PPN 5
2.2 ELASTIC Software COmMpPONENtSuveeeriiieeereiiiteeeeaneeereennneeeeeannns 7
2.3 Distributed Data Analytics Platformcceeeviiiiiiiiiiiiiiiiiiiiiiieenannns 7
2.3.1 Map/Reduce and Task-based APIS.......cccvriiiiiiiiiiiiiiiereiinneennnns 7
2 T A o | PN 8
2.3.3 COMPSS ittt eeiie et ee ettt eeeaeeeeeeanaeeeeaaanneeseeannnaeeaannnaeeanns 9
2 R S o | P PPN 9
P2 105 T (¢ | - T PN 9

2.4 Orchestrator Platformooeeiiiiiiiiiiiiiiiii e e eeneeeanes 10
2.5 N o I o | PP 12
P2 T B0 i 412 T e o PPN 12
2.5.2 ONlINE MONIEOr 1ttt eiiii e eee it eeeeneeereennneeeeannnneeenns 12

2.6 Hybrid Fog Computing Architectureccciviiiiiiiiiiiiiiiiiiiiiiienenns 14
2.6.1 Nuvla and NUVIABOX ...ccvviuiiiiiiiiiiiiiiiieeiiiereeineeeeeanneaaanns 14
P e O B [0 - Y O 14
2.6.2 KONNEKEBOX . .uvviriiiteerniiiteeeianeeeteeneeeeeeanneeeseesnneeesennnneeenns 15
2.6.3 MONTTOr MANAGET .« uuueetieeetteeeeanneeereenneeeeeanneeesessnneeeseannneeens 17

P2 T T D 1= 1 - W 11 (=) (PPN 18

P2 T8 T -1 - LG - | PN 18

3. Requirements of the ELASTIC Software Architecturecccoovviviiinnnnnn.. 19

3.1 Market Analysis: The Strategic Research and Innovation Agenda (SRIA)..19

3.2 ELASTIC Software Architecture Business Goals (BG)ccvvveinveennnnn. 20
3.3 Technical Requirements (TR) of the ELASTIC Software Development
o013 23 =] 0 2 T 22
4. Software Development and Integration Plancceviiiiiiiiiiiiiiinnnnnen. 24
4.1 [0 Tol I TP 25
4.1.1 Development and Integration ProCesscceeevvvieeiiiiiiiiiinnniinnnnns 25
4.1.2 Quality ASSUranCe PrOoCESS...civiiiiiiiiiiiiiiiiiiiii e teeeeeeeeeaiiannnas 27
4.2 INFrastrUCTUre .o.eeeei i i et e e e eenaeeeeaennas 29
4.2.1 Development Platformcooiiiiiiiiiiiiiiiiiiiiiii ittt eeeceiiaas 29
4.2.2 Integration Platformccoiiiiiiiiiiiiiiiiiiiiiiii et 30
4.2.3 Quality ASSUrance TOOLSeviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeiiannnas 31

D3.1 Software architecture requirements and integration plan

Version 1.0

6.

7.

LLAY IV
4.3 Standards and GUIdelinesS........ceviiiiiiiiiiiiiiiiiiiiii i eeeeneeeans 31
4.3.1 Design Patlernsuuii ettt e e ee e, 31
4.3.2 Code COmMMENTS..ciiiitttieiirneeereeieeeeeeanneeeeeennneeeessnneeesseannnees 32
4.3.3 Programming Style......ueiiiiiiieiiiiiiieiiiiiereeiieeeeeaneeereeanneees 32
The COMPSs Software COmpPONENt.......cevviietiiriiieireenneeeeeaneeereeanneens 32
5.1 General DesCriptionueiiieiiiiiiiii i eeeii e eeereeeeaanneeaanes 32
5.2 RUN-EIME INtEINALS...eiiie i e e e e e eneeeeaenas 33
5.3 Interface with the Underlying Computing Devicescccvvviiuveennnnnn. 35
Acronyms and ABDreviationseeeeeeeereiiitiiriiiieeereinieeeeeenneeeeeennneens 36
331014 [o]= 1= 10] 1)V PP 36

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

Executive Summary

This deliverable covers the work done during the first phase of the project within
WP3. The deliverable spans 6 months of work and handles the work done in Task 3.1
"Software architecture requirements specification” to reach milestone MS1.

This deliverable describes the ELASTIC software development ecosystem upon
which the ELASTIC use-case will be developed, deployed and executed. Concretely,
it identifies the set of software components and tools that will form the ELASTIC
ecosystem, and it provides a short description of each component.

One of the key features of the ELASTIC ecosystem will be its capability to instantiate
multiple software architecture configurations, incorporating different software
components. The objective of this feature is to cover different system necessities to
properly coordinate edge and cloud resources, while guaranteeing the non-functional
requirements (NFR) imposed by the cyber-physical interactions. This key feature
requires each software component to define a clear interface, described in this
deliverable, to ensure a seamless integration among them.

Finally, this deliverable also provides the development and integration plan for the
ELASTIC project. It includes the tools, techniques and methodologies that will be
shared among all partners in order to ensure the quality of the final product.

The first milestone of Task 3.1 has been carried out successfully and all objectives
of MS1 have been reached and documented in this deliverable.

The ELASTIC Software Development Ecosystem

Overview

ELASTIC addresses each of the requirements defined in Section 3 by developing a
software development ecosystem incorporating software components from multiple
computing areas, including distributed data analytics, embedded computing,
internet of things (loT), cyber-physical systems (CPS), software engineering, high-
performance computing (HPC), and edge and cloud technologies. These unique (and
heterogeneous) combination of software components will enable to efficiently
distribute extreme-scale big-data analytics across the compute continuum, from
edge to cloud, and provide guarantees on the non-functional requirements of the
system.

Figure 1 shows the overall ELASTIC software development ecosystem including the
main software components. Concretely, the ELASTIC ecosystem will consist of:

e The distributed data analytics platform (WP2) upon which the data analytics
methods implemented in the ELASTIC use-cases (WP1) will execute. This platform
will also incorporate any interface that the software components may require to
expose to the programmer.

e The orchestrator layer (WP3), which will incorporate the COMPSs run-time, will
be the responsible of implementing the key innovation of ELASTIC: a new
elasticity concept capable of efficiently distributing the computation (provided
by the data analytics platform) across the compute continuum (through the
hybrid fog computing platform), while fulfilling the system’s NFR.

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

e The orchestration layer will consider the input from the NFR tool (WP4), that
will (statically) analyse the internal structure of application implementing the
data analytics and (dynamically) monitor the execution of the system using the
hybrid fog computing platform capabilities.

e The hybrid fog computing platform (WP5) will be in charge of deploying the
computation across the compute continuum based on the distribution provided
by the orchestration layer. The deployment will be performed by Nuvla which
will consider two interfaces at the edge level: the NuvlaBox and the KonnektBox.
The former will only support microservices provided by Docker (or similar); the
latter will support both microservices and monolithic native services provided by
Linux (or similar). Finally, the hybrid fog computing platform will incorporate a
data router service to feed the data analytics methods with data coming from
the geographically distributed sensors. Here, dataClay will be used to implement
a storage distributed system to guarantee that the data is available across the
compute continuum.

Distributed Data Analytics Platform| (WP2)

Complex Event [[M/R & Task | feeeeeeeee :
Processor (CEP) || Models :

(WP4)

Offline
Analysis

Orchestrator

COMPSs

(WpP3)

NFR tool

Online ||
Analysis

/f) (wps)

‘Nuvl*aBox] E‘KonngktB'oxH dataClay ’

A4

1
Microservice || Monolitic Service Data
Manager Manager Router

I Monitor Manager |

_ Hybrid Fog Computing Platform)

< Compute Continuum >

Figure 1. ELASTIC Software Development Ecosystem.

In the figure, the solid arrows represent the interaction among all the software
components intended to be integrated within the complete ELASTIC software
architecture. However, as stated above, the ELASTIC ecosystem will allow to
instantiate other software architectures formed by a subset of software components.
This is represented with the dashed arrows in the figure. For example, the software
architecture could be instantiated without COMPSs, Nuvla or dataClay. In this case,
these other instantiations will not include all the functionalities intended to be
developed by ELASTIC. An example of a software architecture not featuring all
ELASTIC functionalities is a system in which the data does not need to be distributed
across the compute continuum but resides in a centralized resource. In this case, the

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n lJ | 1V

Data Router can bypass dataClay. In this case however, no distributed storage
features will be included in the resultant software architecture.

Overall, the principle behind this flexible ecosystem is to enable the creation of
multiple instantiations of the ELASTIC software architecture to cover different
requirements of the potential “users” of the ELASTIC technology. Moreover, this
principle will facilitate the interoperability, portability, and scalability of the
ELASTIC software components and so it will increase the potential exploitation
opportunities in the near future.

ELASTIC Software Components

ELASTIC has carefully selected the software components that will form the ELASTIC
ecosystem, prioritizing those owned by the ELASTIC partners or offered as open-
source with a large community behind. By doing so, we envision to reduce the time-
to-market and maximize exploitation opportunities of the ELASTIC ecosystem. Table
1 identifies the set of software components that will be included in the ELASTIC
ecosystem, the WP in which the component will be evaluated, the owner and the
license.

Table 1. ELASTIC Software Components.

Software Component WP Owner License
Distributed COMPSs WP3 BSC Open-source
Data Flink Apache Soft Open-source
Analytics Spark WP2 pzla:c € dot‘ware Open-source
Platform Kafka oundation Open-source
Orchestrator COMPSs WP3 BSC Open-source
Static Analysis tools ISEP Open-source
NFR tool Run-time analysis tools Wp4 ISEP Open-source
Nuvla/NuvlaBox SixSQ Open-source
Hybrid Fog KonnektBox IKL Proprietary
Computing dataClay WP5 BSC Open-source
Platform Kubernetes Linux Foundation | Open-source
Docker Docker Inc. Open-source

In the next subsections, the software components are described in detail. Further
details on components that belong to specific WPs may be found in the respective
design/requirement document of the WP for the first phase of the project, i.e.,
within deliverables D2.5 [1], D4.2 [2], and D5.1 [3]. The COMPSs component is
presented in this deliverable in Section 5.

Distributed Data Analytics Platform

This section describes the software components included in the ELASTIC software
development ecosystem to implement data analytics applications. See Deliverable
D2.5 [1] for further information.

Map/Reduce and Task-based APIs

The ELASTIC ecosystem will incorporate two well-known programming models
capable of exploiting complementary forms of parallelism: Map/Reduce and Task-
based.

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

The Map/Reduce (M/R) programming model is a common model for distributing the
same computation into parallel units for operating over very large datasets.
Originally developed by Google, it has nhumerous implementations, including Apache
Spark [4], RISELAB’s PyWren [5] and others. Generally, it consists of two categories
of operations: (1) map operations, which run the same computation on each data
record/chunk, and (2) reduce operations, which combine all the records/chunks, or
subsets thereof, into a single result, or a new dataset, respectively. Many common
tasks can be carried out with M/R operations. The M/R programming model only
exploits structured parallelism. The ELASTIC software components that will support
this programming model are Spark and COMPSs, both described in subsections 2.3.2
and 0 respectively.

The Task-based programming model is used for distributing independent,
asynchronous and parallel units of computation for operating over very large
datasets. The model may support the definition of fine-grain synchronization
mechanisms among tasks by means of data dependencies: a task with an input
dependency on a data element cannot start its execution until any previous task with
an output dependency over the same data element completes. The task-based model
can exploit both, structured and unstructured parallelism. As result, the task-based
model allows supporting the M/R model with two sequential tasks to implement the
map and reduce primitives. COMPSs [6] and RISELAB’s Ray [7] are two distributed
programming frameworks that support the task-based model. The ELASTIC software
component that will support this programming model is COMPSs, described in
subsection 0.

Spark

Apache Spark [4] is an open-source project for fast data processing and cluster
computing. Spark provides an interface for programming entire clusters with implicit
data parallelism and fault tolerance. Spark facilitates the implementation of both
iterative algorithms, which visit their data set multiple times in a loop, and
interactive/exploratory data analysis, i.e., the repeated database-style querying of
data. Apache Spark uses memory and can use a disk for processing. Spark is able to
execute batch-processing jobs between 10 to 100 times faster than the Hadoop-
based M/R framework

Every Spark application consists of a driver program that runs the user’s main
function and executes various parallel operations on a cluster. The main abstraction
Spark provides is a resilient distributed dataset (RDD), which is a collection of
elements partitioned across the nodes of the cluster that can be operated on in
parallel. A second abstraction in Spark is shared variables that can be used in parallel
operations. By default, when Spark runs a function in parallel as a set of tasks on
different nodes, it ships a copy of each variable used in the function to each task.

Table 2. Sample methods from Spark

Description API

Chaining the resilient distributed dataset JavaPairRDD<String, Integer>

(RDD) transformation operations to realise | counts =

the MapReduCG funCtionallty lines. flatMap (« .) .map (.« ..) .
reduceByKey (...);

The parallel processing enabled by Spark is supported by the COMPS distributed
framework used in the ELASTIC platform implementation.

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n lJ | 1V

COMPSs

COMPSs [6] is a distributed development framework developed at BSC and used in
HPC environments to distribute workloads transparently across multiple computing
nodes with regards to the underlying infrastructure. In cloud and big-data
environments, COMPSs provides scalability and elasticity features allowing the
dynamic provision of resources.

COMPSs supports the two programming models presented in Section 2.3.1 into a
unified development environment. The M/R syntax used is compatible with the one
provided by Apache Spark (see Table 2). The conceptual description of the main task-
based API primitive is summarized in Table 3. The M/R and task-based API primitives
will be then transformed to a set of API calls to the COMPSs run-time that will
orchestrate the distribution computation across the compute continuum, while
fulfilling the NFR, transparently to the programmer.

Table 3. Conceptual description of the task-based API provided by COMPSs.

Programming
model
Task-based task [(<dataset>=[IN|OUT|INOUT] return=<dataset>)]

API Primitives

Flink

Apache Flink [8] is an open-source and distributed stream processing framework that
provides support for real-time complex event processing. Flink offers tremendous
capabilities to run real-time data processing pipelines in a fault-tolerant way at a
scale of millions of events per second. Minimising resource use resources at single
millisecond latencies is also considered a strength of Flink. These features make Flink
a suitable candidate for use in the distribute data analytic platform - specially based
on the emphasis on the non-functional requirements in the ELASTIC ecosystem.
Moreover, Flink has been designed to perform computations at in-memory speed and
run in all common cluster environments, which make it use-able in the task-based
programming model in the ELASTIC ecosystem.

Table 4. Some of the key methods from Flink.

Programming e
API Primitives
model
Setting up a final StreamExecut}onEn\uronment envl= .
StreamExecutionEnvironment.getExecutionEnvironment
sample data

()7
Stream (from DataStream<String> text =

a file) env.readTextFile ("file:///path/to/file");
DataStream<String> input = ...;
DataStream<Integer> parsed = input.map
Settingup a | (new MapFunction<String, Integer>() {

transformatio @QOverride
n function on public Integer map (String value) {
a data stream return Integer.parselnt (value);
}
1) 7
Kafka

Apache Kafka [9] is an open-source stream-processing software platform, project
aims to provide a unified, high-throughput, low-latency platform for handling real-

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

time data feeds. Its storage layer is essentially a "massively scalable pub/sub
message queue designed as a distributed transaction log, making it highly suitable
for processing streaming data from heterogeneous sources in the ELASTIC
ecosystem.

Kafka stores key-value messages that come from arbitrarily many processes called
producers. The data can be partitioned
into different "partitions” within different

"topics”. Within a partition, messages are
strictly ordered by their offsets (the v
position of a message within a partition),
and indexed and stored together with a
timestamp. Other processes called
“consumers” can read messages from
partitions. For stream processing, Kafka
offers the Streams API that allows writing
Java applications that consume data from
Kafka and write results back to Kafka. In
the ELASTIC Distributed Analytic platform,
Apache Kafka will work in conjunction

- -
with other stream processing systems such

as Apache Flink and Apache Spark.

—
2
@
=
O
©
g
©
S

Table 5. Some of the key methods from Kafka

Description API
Create a topic named | kafka-topics.sh --create --bootstrap-server
"test" localhost:9092 --replication-factor 1 --
partitions 1 --topic test

Show the list of topics | kafka-topics.sh --list --bootstrap-server
localhost:9092

Post messages on the | kafka-console-producer.sh --broker-list
“test” topic localhost:9092 --topic test

Consume messages kafka-console-consumer.sh --bootstrap-server
localhost:9092 --topic test --from-beginning

2.4 Orchestrator Platform

Within ELASTIC, the COMPSs run-time will implement one of the key innovations of
ELASTIC, i.e., a new elasticity concept to distribute the computation among the
compute continuum while fulfilling the NFR imposed by the system.

COMPSs supports two interfaces to communicate with the different cloud
technologies for resource and container management. The resource management
interface provides methods for creating, consulting and destroying resources. The
specific methods are represented as a generic Cloud Connector and implemented
with the functionalities presented in Table 6. The abstract methods are further
implemented in the specific subclasses that implement four different connectors:
(1) rOCCI (ruby Open Cloud Computing Interface) [10], (2) JClouds [11], (3) Docker
[12], and (4) Mesos [13].

10

D3.1 Software architecture requirements and integration plan
Version 1.0

LLAN d |1V

Table 6. Generic Cloud Connector of COMPSs runtime.

Description

API

Create a virtual machine (VM)
with the given description and
properties

public abstract Object

create (HardwareDescription hd,
SoftwareDescription sd, Map<String,
String> prop) throws ConnException;

Wait until the VM with id @id is
created

public abstract VirtualResource
waitUntilCreation (Object id) throws
ConnkException;

Destroy the VM with id @id

public abstract void destroy (Object
id);

Return the time slot

public long getTimeSlot ()

Return the price per time slot

public abstract float
getPriceSlot (VirtualResource
virtualResource) ;

Close the connector interface

public abstract void close();

The container management interface, created within the Phase 1 of the project to
better support the interaction with the rest of software components, allows to
distribute the computation on containers deployed across the continuum. The
methods to handle the deployment process are represented as an abstract Container

Starter, with the methods listed in Table 7.

Table 7: Abstract Container Starter of COMPSs Runtime

Description

API

Runs the necessary process to
launch the container in a node
and returns the container id.

protected abstract String
distribute (String master, Integer
port) throws InitNodeException;

Stops the remote container

protected abstract wvoid
stopContainer (String user, String
name, String containerId);

Removes the container from
the remote host

Protected abstract void
deleteContainer (String user, String
name, String containerId);

Moreover, we have extended the definition of the available resources, specified in
COMPSs through the resources and project XML files (see Section 5 for further
details). Concretely, we have included the ContainerNode field to enable

container deployment, following the formatting as shown below.

<ContainerNode Name="localhost">
<Engine>docker</Engine>

</ContainerNode>

<ImageName>compss/compss—-app:1l.0</ImageName>

Finally, COMPSs supports the distribution of parallel programming models included
in the SDKs provided by the parallel embedded architectures of the edge components
to further exploit the performance capabilities these architectures. Concretely, it

supports OpenMP OpenMP [14], OmpSs [15] and CUDA [16].

11

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n lJ | 1V

Section 5 provides a detailed description of COMPSs.

NFR Tool

The ELASTIC architecture includes the Non-Functional Requirements (NFR) tool,
which will (statically) analyse the internal structure of application implementing the
data analytics and (dynamically) monitor the execution of the system using the
hybrid fog computing platform capabilities.

This tool will therefore execute in two different contexts:

1. As astand-alone tool, to be used before deployment to determine the system
configuration (allocation of components to nodes) which enables to fulfil the
non-functional requirements of the applications; and

2. As a runtime component which will analyse the monitoring data related to
the services’ execution, detecting actual execution changes that violate the
service level agreements, triggering changes by the orchestration layer.

Detailed information about the requirements and functionalities of the NFR Tool can
be found in deliverable D4.2 [17].

Offline Tool

Table 8 presents the interface of the NFR Offline tool. The tool can be used to
analyse a single property in isolation, using the optional --NFR parameter. The other
inputs of the tool are the files with the platform description, the application services
and the QoS parameters.

Table 8. NFR Offline tool interface

Description API

Analyze a single property | analyze [--NFR XXX] --platform-description
platform.xml --application-services services.xml --
QoS-parameters gos.xml
--output system_configuration.xml

Online Monitor

During execution, the NFR tool provides two types of objects. The first, is the SLA
Manager which enables a single property to be analysed in isolation. Table 9 presents
the generic interface of the SLA Manager, where Platform_Information denotes the
configuration of the ELASTIC nodes, Services the currently executing services,
QoS_Parameters defines the services’ desired level of service, and
Runtime_Information indicates the monitored information acquired during runtime.
This analysis will output a possible new system configuration, describing the set of
required changes to the current system configuration or an empty set if the system
is currently satisfying with the required QoS levels. A simple feasibility check is also
available.

12

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

Table 9. Isolated NFR analysis API

Description API
Create a System | SystemConfiguration system =
Configuration createConfiguration(Platform_Information,

Services,QoS_Parameters)

Isolated NFR property | Boolean feasible =
feasibility check, when a | checkFeasibility(Runtime_Information)
change is detected in a
service execution

Isolated NFR property | SystemConfiguration changes =
analysis, returning the | isolatedAnalysis(Runtime_Information)

(possible empty) set of
required changes to the

current system

configuration

Configuration Change | SystemConfiguration system =
Information changeConfiguration(Service, QoS_Parameters)

The second provides a holistic NFR analysis, where individual SLA Managers are
iteratively used by the Global Manager, considering the potential trade-offs between
performance, predictability, energy-efficiency, communication quality and security.
The API of the Global Manager is described in Table 10, being similar to the one in
Table 9.

Table 10. Holistic NFR analysis API

Description API
Create a System | SystemConfiguration system =
Configuration createConfiguration(Platform_Information,

Services,QoS_Parameters)

Holistic NFR property | Boolean feasible =
feasibility check, when a | checkFeasibility(Runtime_Information)
change is detected in a
service execution

Holistic NFR property | SystemConfiguration changes =
analysis, returning the | holisticAnalysis(Runtime_Information)

(possible empty) set of
required changes to the

current system

configuration

Configuration Change | SystemConfiguration system =
Information changeConfiguration(Service, QoS_Parameters)

A note that the SLA Managers when used in the holistic phase, will implement analysis
which already take into consideration the multiple non-functional properties.

13

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

Hybrid Fog Computing Architecture

The ELASTIC project proposes a hybrid fog-computing architecture based on standard
open-source reusable components. The dependences between the components
running on the fog is reduced to a minimum in order to allow the hot-plug and
dynamic reconfiguration of the services offered by the platform. The hybrid
architecture allows the use of dynamic applications in form of microservices
(containers) or native applications (monolithic).

Detailed information about the software component included in the fog computing
architecture can be found in deliverable D5.1 [3].

Nuvla and NuvlaBox

Nuvla is a secured edge-to-cloud management platform, enabling near data
processing, targeting a number of industries, including Al, smart city, big data and
Industry 4.0. In ELASTIC, Nuvla will provide the edge control and application
provisioning capabilities for both the cloud and edge infrastructures. Nuvla also
brings a ‘data ledger’ service component which allows the user to register, search
and find datasets from a wide range of infrastructures, across the cloud and edge
continuum. This can then be used to build higher level placement heuristics.

Nuvla is open source under Apache 2.0 and it is also available for on-premise
installations.

Alongside Nuvla, there is the NuvlaBox, an open source software distribution which
turns x86 and ARM hardware platforms into edge devices. The NuvlaBox can be
controlled remotely from Nuvla, providing a platform to deploy and monitor
applications packaged as containers on the edge and in the cloud. The NuvlaBox also
comes with clustering capabilities, which are highly appreciated by the ELASTIC use
cases, as the need for additional computation power varies over time.

Throughout the project, Nuvla and NuvlaBox will also be extended to provide self-
contained management capabilities - an edge-to-edge solution - which will allow for
a faster, more secure and cloud-independent way to manage and provision workloads
at the edge.

1.1.1.1 Nuvla API

Nuvla exposes a rich API heavily inspired by the DMTF CIMI cloud industry standard'.
All infrastructure resources are modelled and represented as JSON documents which
are uniquely identified by URIs. Each resource representation has a globally unique
ID attribute of type URI which acts as a reference to itself.

The API is self-discoverable and follows a RESTful HTTP-based protocol, providing
language-agnostic integration with other software components. The standard GET,
POST, PUT and DELETE HTTP methods are available, covering all basic Search (or
Query) and CRUD (Create, Read, Update, and Delete) operations, plus the possibility
to add custom resource operations which are mapped into POST requests.

The API server also includes additional intelligence to support authentication-like
"user” and "session” resources, which are used when providing access control lists,
for a fine-grained authorization model. At the moment, the API supports a wide set

! https: //www.dmtf.org/sites/default/files/standards/documents/DSP0263 2.0.0.pdf

14

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

of authentication mechanisms, from internal user/password and API key/secret, to
social and even federated authentication (via GitHub, eduGAIN, etc.).

The interface specification provides advanced features for manipulating results when
searching resource collections. All the resource selection parameters are specified
as HTTP query parameters. These are specified directly within the URL when using
the HTTP GET method.

Table 11 list the management API to be used by adjoining ELASTIC components in
order to achieve a successful and secure software integration.

Table 11. API syntax exposed by Nuvla.

Method | Path (included in /api/) Description
cloud-entry-point Self-discovery entry point, with a list of all
P the resources available in the system
Get the collection “resource-name” with a list
<resource-name> . .. s
of all individual resources within
get <resource-name>/<uuid> Get a specific resource, identified by a UUID
<resource- Filter a collection with a mathematical
> 25 filter=< s “expression” compliant with the EBNF
name=soJiiter=<expression grammar defined in the CIMI specification
sresource-name>? Sort a collection by an “attribute”
Sorderby=<attr>:[asc|desc] y
Passed together with a payload, it creates a
<resource-name>
new resource
post Triggers a custom action for that resource. It
<resource-name>/<action> also accepts payloads, depending of the
action specification
Edits the resource with the UUID “uuid” and
put <resource-name>/<uuid> updates its attributes based on the request’s
payload
delete | <resource-name>/<uuid> Deletes the resource with the specified UUID

KonnektBox

The KonnektBox is the fog-computing platform of the IKERLAN KONNEKT®
architecture, which is the in-house developed solution for industrial digitalisation of
products and services, composed by KonnektCloud and KonnektBox itself. The
KonnektBox uses a proprietary protocol (via MQTT) to manage its workloads and
services. If the solution uses a VPN, Docker Swarm or Kubernetes can be implemented
and an administration port can be opened in order to perform services
administration. Any IT infrastructures which provide the technologies mentioned in
D5.1 [3] can be associated with Nuvla, to allow the management of workloads into
non-NuvlaBox devices. For example, any Docker Swarm infrastructure can be added
to Nuvla and have its microservices managed from there. So, Nuvla could see
KonnektBox as a secure EndPoint (using Docker Swarm).

15

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n lJ | 1V

Table 12. Microservice manager’s Python API description?.

Description API
Run a Swarm container on def swarm(image, command=None,
Docker Engine **kwargs)
Create a discovery token def create (image, **kwargs)

List the nodes in a Docker

def list (**kwargs
cluster (gs)

def manage (image, repository, tag=None,

Create a Swarm manager **kwargs)

def join(image, repository=None,

Create a Swarm node tag=None, **kwargs)

The docker node CLI utility allows users to run various commands to manage nodes
in a swarm, for example, listing the nodes in a swarm, updating nodes, and removing
nodes from the swarm [50].

KonnektBox microservice manager provides a way to deal with containers using OS-
level virtualisation, which eases the deployment of programs and the reconfiguration
and dynamic fog-cloud service execution required by the project, whilst ensuring a
lightweight virtualization mechanism. The manager must provide an API to deal with
the creation, run, stop, deletion etc. of the containers. Table 4 presents the basic
API. Docker is a well-known known alternative and it offers an API that can be called
through command line, HTTP, Python or GO.

Table 13. Microservice manager’s Python API description®.

Description API
Runs a container def run(image, command=None, **kwargs)
Stops a container def stop(image, **kwargs)
Prints the logs of a container def logs (image, **kwargs)
Lists all available containers def list (**kwargs)

def pull (image, repository, tag=None,

Pulls a container **kwargs)

def commit (image, repository=None,

Commits a container tag=None, **kwargs)

2.6.2.1

In the KonnektBox monolithic service manager operating system calls are going to be
used to execute any task type, directly from the application or via the microservice
manager. Those OS system calls are: 1) process management (fork, exit, wait), 2)
memory management, 3) file operations (file open, read, write, close), 4)
input/output device management, including communications. Those system calls are

2 Based on the Docker swarm API: https://docs.docker.com/swarm/reference/
3 Based on the Docker API (https://docker-py.readthedocs.io/en/stable/containers.html)

16

D3.1 Software architecture requirements and integration plan

Version 1.0

I.Lnd||U

to be used via the compiler (C, C++), via interpreter (Python) or via the Java virtual

machine (Java).

In ELASTIC we will provide a higher level API, to be used by the orchestrator for the
task management, presented in Table 14.

Table 14. Monolitic service manager’s Python API description.

Description API
Runs a native application def run(app, command=None, **kwargs)
Stops a native application def stop(app, **kwargs)
Prints th.e logs of a native def logs(app, **kwargs)
application
Lists all available native def 1ist (**kwargs)
applications

. . . def pull (app, repository, tag=None,

Pulls a native application A KWwargs)

Monitor manager

The monitor manager will be the responsible for the collection of metrics of the
current computing node (as for example the CPU, GPU, memory usage or the
functioning temperature, humidity or connectivity). Additionally, the monitor
manager will expose the characteristics of the computing node (e.g. hardware type,
minimum latency, security level...). Those metrics and characteristics are required
by the Orchestrator to select the appropriate computing node to execute a task.
Therefore, there will be a daemon running in every computing node and it will expose
an API to collect the data to the orchestrator.

Nowadays, there are simple alternatives like CAdvisor which analyses resource usage
and performance characteristics of running containers, or more complex and
complete like Prometheus which provides full metric analytics.

Certain parts of the KonnektBox monitoring daemon will be used in this component.

Table 15. Microservice manager’s Python API description®.

Description

API

Gets the usage from a time
interval of different
measurements, such as CPU,
GPU, memory

def get statistics(time interval,
measurements, **kwargs)

Gets hardware resources

def get hw(characteristics=All,
**kwargs)

Gets latency, security level... and
other NFR requirements values

def get features (characteristics=All,
**kwargs)

4 Based on the Docker API (https://docker-py.readthedocs.io/en/stable/containers.html)

17

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

Data router

Data router middleware will be responsible for the data communication and storage,
created by the sensors, which is going to be later processed by the distributed data
analytics platform. This communication can occur through the traditional send and
receive interfaces, or, alternatively, publish-subscribe pattern can be used. An
example of publish-subscribe pattern is the MQTT standard protocol. The
implementation of this approach requires a message broker, accessible from both
the publisher and the subscriber.

Some developments of KonnektBox will be integrated in ELASTIC Data Router.This
middleware should be compatible with dataClay.

Table 16. Send/receive tentative Python API description.

Description API

Sends a message to a receiver def send(message, receiver)

Receives a message from a sender def receive (message, sender)

Sends a message to all nodes def broadcast (message)

Sends a message to some receivers | def multicast (message, receiver)

Table 17. Publish-subscribe tentative Python API description.

Description API

Publishes a message to a topic | def publish(topic, message)

Subscribes to a topic def subscribe (topic)

Waits and receives messages
from a topic that it is def poll(timeout)
previously subscribed

dataClay

dataClay is a distributed storage platform developed at BSC and used in HPC
environments to maintain user-defined data consistency and visibility. dataClay
enables different computing resources located at different levels of the compute
continuum, from edge to cloud, to define the visibility of their data. To do so, it
enforces visibility scopes for each piece of data (at any granularity), ranging from
local, visible to a subset of consumers, or global. This tuneable visibility is key to
share data while at the same time make the system secure and scalable. dataClay
will enable to guarantee the data consistency among the different computing
resources (as defined by the user through data scoping), liberating the programmer
from the burden of implementing explicit data transfers across the compute
continuum.

The dataClay interface allows programmers to store objects using the same model
that they use in the application, thus avoiding time consuming transformations
between the persistent and non-persistent models. In addition, dataClay simplifies
and optimizes the idea of moving computation close to the data by enabling the
execution of methods in the same node where a given object is located.
Furthermore, dataClay code intrusion is considered minimum, since it does not
require adding a vast number of code lines. Table 18 presents the Python API of

18

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

dataClay. An equivalent APl using the CamelCase naming convention is also offered
for Java source codes.

Table 18. DataClay Python API description.

Description API

Stores an object in dataClay and assigns an OID to it. | def make persistent
. (self, alias=None,
An optional alias may be provided to identify the backend id=None,

object (additionally to its OID). recursive=True)

Removes the alias linked to an object. If this object
is not referenced starting from a root object, the
garbage collector will remove it from the system.

def delete _alias (cls,
alias)

def federate (self,

Federates the current object with external dataClay. | dataclay name=None,
recursive=True)

Deliverable D5.1 [3] provides a detailed description of dataClay.

3. Requirements of the ELASTIC Software Architecture

3.1 Market Analysis: The Strategic Research and Innovation Agenda (SRIA)

The SRIA%, defined by the Big Data Value Association (BDVA)®, collects the needs and
concerns of the big data stakeholder ecosystem as a result of several workshop,
conferences, surveys, etc. Below, we list the main challenges defined in the SRIA:

e Privacy and security guarantees: Data from different sources and locations
make difficult tracking of security and privacy of data. This is one of the main
concerns of the stakeholder ecosystem.

¢ Cost management: Companies need to foresee the cost of Big Data projects. This
is a big challenge due to quick scalability and vast amount of data to process.
Providers are supplying new monetization models to offer cost-effective
alternatives to customers.

e Scalability and performance: Coping with the process, storage and analysis of
vast amount of data collected from geographically distributed data sources make
necessary new approach of software tools to face this extreme-scale analytics
challenge.

¢ Integration with existing models: Companies are concerned about lack of
operability of the new Big Data solutions with existing systems, what can lead to
additional costs, lack of skills, increase of time to market, etc. In this sense, is
important to ensure interoperability by using de-facto market standards.

e New and varied big data capabilities: Each sector has different business
objectives so they will require different analytic needs. This includes the

5 http://bdva.eu/sites/default/files/EuropeanBigDataValuePartnership SRIA v3 0.pdf#overlay-
context=downloads%3Fg%3Ddownloads

5 The BDVA is an industry-led organisation representing European large and SME industry and research
organizations.

19

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

fulfilment Big data analytics solutions providers need to address these customers’
requirements in all domains, being real-time, energy efficiency and security the
most important ones to be fulfilled in the smart city domain. These requirements

e Lack of big data skills: Shorten the time-to-market is a great challenge for
Solution providers, so new Big Data tools have to be highly programmable.

Figure 2 shows the occurrence of each of the needs and concerns of the big data
stakeholder ecosystem presented above.

Security
Budget

Lack of talent to implement big data

Lack of talent to run big data
and analytics on an ongoing basis

Integration with existing systems

Procurement limitations on big data vendors

Enterprise not ready for big data

Figure 2. Main challenges to implement Big Data in the companies’

3.2 ELASTIC Software Architecture Business Goals (BG)

Based on the previous market analysis conducted by the BDVA, we have identified
six BGs that the ELASTIC software architecture has to incorporate.

ID BG1

Name Interoperability

Type Business Goal

Descrip- | ELASTIC will ensure integration and interoperability by incorporating
tion de-facto market standards software components. This is a key feature

for a wider uptake of the ELASTIC solution and for exploitation purposes.
Main interests will be those applied in fog computing, smart cities and
railway domains, and possible contributions to standardization are also
addressed.

Rationale | Ensure integration and interoperability of ELASTIC software components
with existing solutions.

Involved | loT/Cloud/Edge Providers, Big data analytics solutions providers.
Stakehol.

ID BG2

Name Ease of use

Type Business Goal

Descrip- | One of the main goals of the ELASTIC solution is to help programmers in
tion the development of big data applications in real-time scenarios. To do

this, ELASTIC will reduce the time of manually distributing the
computation along the continuum, by means of a software architecture
able to do this task in an efficient automatic way.

7 https://es.scribd.com/document/308550795/Accenture-Big-Data-POV

20

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n 'J | 1V

Rationale | Reduce time to market of deploying and executing new extreme-scale
big data services and additional costs of training.

Involved | Big data analytics solutions providers, Innovative SMEs of big data
Stakehol. | solutions, Edge providers, SMEs in all sectors, IoT solution providers.

ID BG3

Name Scalability and high performance

Type Business Goal

Descrip- | ELASTIC aims to develop a novel software development ecosystem to
tion efficiently distribute computation along the compute continuum. To

ensure high performance, ELASTIC will adopt architectures from HPC,
and parallel embedded computing domains.

Rationale | The elaboration and knowledge extraction (including data-in-motion
and data-at-rest analytics) of data coming from geographically
distributed sources.

Involved | Big data analytics solutions providers, Innovative SMEs of big data
Stakehol. | solutions, SMEs in all sectors.

ID BG4

Name Non-functional Requirements

Type Business Goal

Descrip- | The ELASTIC software architecture will provide guarantees about the
tion non-functional requirements inherited from the cyber-physical

interaction of the smart city domain. The “level of guarantee” will
depend on the “criticality-level” of the service implemented and the
computing devices upon which these services will be deployed. In this
sense, edge-based devices will provide stronger guarantees than cloud
ones.

Rationale | Enable the use of ELASTIC technology in environments with non-
functional requirements, e.g. railway.

Involved | Big data analytics solutions providers, Innovative SMEs of big data
Stakehol. | solutions, SMEs in all sectors, Academics and Scientists.

ID BG5

Name IT infrastructure cost reduction

Type Business Goal

Descrip- | The ELASTIC software architecture has the objective of enhancing the
tion level of data latency and throughput as those obtained using a cloud-

based infrastructure but at lower cost.

Rationale | Make workload and data process distribution between Cloud and Edge
at lower cost while maintaining or enhancing the productivity,
compared to cloud-only solutions.

Involved | Big data analytics solutions providers, Innovative SMEs of big data
Stakehol. | solutions, SMEs in all sectors, Academics and Scientists.

ID BG6
Name Privacy and Security
Type Business Goal

21

D3.1 Software architecture requirements and integration plan

Version 1.0

I.LnJ||U

Descrip-
tion

Regarding privacy, all data collected by the loT sensors connected to
the ELASTIC software architecture will be anonymized before being
processed and stored. This anonymization will fulfil current Italian
regulations regarding privacy and security of citizens. These regulations
require to guarantee that there will be no means to: (1) recognize the
specific pedestrian/vehicle and (2) trace the path of the anonymize
object.

Regarding security, the ELASTIC software architecture will incorporate
all mechanisms to guarantee the correct operation of the smart city and
the connected tramways, including active thread avoidance
mechanisms.

Rationale

Ensure privacy and security of business and personal data collected and
processed by the ELASTIC software architecture.

Involved
Stakehol.

All stakeholders.

Technical Requirements (TR) of the ELASTIC Software Development
Ecosystem

The six BG identified in the previous section results in four technical requirements
described below.

ID REQ-SWARCH-TR1

Name Increase Software Productivity

Type Technical Requirement

Descrip- | ELASTIC aims to promote productivity regarding the development and

tion execution of extreme-scale data analytics services, in terms of
programmability, portability and performance. With such purpose
ELASTIC promotes the serverless concept that provides an execution
model where the management of resources is completely hidden from
the application developer.

Rationale | Programmability. The developer is responsible for: (1) defining the

functionality of the extreme-scale data analytics service as units of code
exposed to the outside world, and (2) defining the parallelism exposed
by the service, by means of programming models, i.e., task-based and
M/R. This will allow the software architecture to efficiently manage the
underlying computing resources, and to hide the complexity of the
compute continuum to the programmer. This possibility boosts the
performance of the whole system, possibly slightly degraded by the use
of multiple abstraction layers due to its greater response latency
compared to systems continuously running on a dedicated server. This
is a further step towards the definition of what the application does and
not how the application does.

Portability. The use of the serverless execution model and well-known
programming models to express the data-analytics functionality, i.e.,
task-based, M/R, streaming, and the parallelism exposed by the
application enables to execute the same application in multiple
platforms without any performance loss. The underlying run-time
systems included in the ELASTIC software development ecosystem are
responsible for dealing with the internals of each specific technology
with the objective of maximizing the performance capabilities,
including edge and cloud.

22

D3.1 Software architecture requirements and integration plan

Version 1.0

LLnJ||U

Performance. The ELASTIC software architecture will be responsible for
distributing the data analytics execution across the compute continuum.
The ELASTIC software architecture will include the proper data analytics
and programming models to exploit the capabilities of the architectures
where the final functionalities will ride on. A number of parallel
programming models will be supported in the ELASTIC software
architecture as well, i.e., OpenMP, OpenACC or CUDA, which can exploit
the benefits of each final architecture (multi-core, NVIDIA GPU, GPGPU,
etc.) in a customized manner as evidence that performance is a very
important aspect within the ELASTIC architecture.

ID

REQ-SWARCH-TR2

Name

Fulfilment of Non-Functional Requirements

Type

Technical Requirement

Descrip-
tion

The ELASTIC software architecture aims to support the non-functional
requirements usually found in cyber-physical systems, such as real-time
processing, energy-efficiency, communication quality of service,
security and safety.

Rationale

In cyber-physical systems, the interaction between the computing
system and its environment needs to cope with the non-functional
requirements inherited from the application domain. Control loops
require guaranteed response times, sensors and embedded computers
require energy efficiency. At the same time, while processing time and
energetic cost of computation is reduced as data analytics is moved to
the cloud, the end-to-end communication delay and the performance of
the system (in terms of latency) increases. Moreover, as computation is
moved to the cloud, the required level of security increases to minimise
potential attacks, which may end up affecting the safety assurance
levels, hindering the execution and data exchange among edge and
cloud resources.

The ELASTIC project will include these non-functional properties as first
class entities in the software architecture. Developers will be able to
specify quality-of-service requirements, which can span from critical
guaranteed requirements to best-effort approaches, depending on the
criticality of the application function. The component deployment will
be either statically or dynamically performed, to be able to provide the
required quality-of-service. Critical guarantees will be provided through
static deployment of resources, whilst softer requirements will be coped
with a mix of static and dynamic adaptation approaches.

ID

REQ-SWARCH-TR3

Name

Enable Flexibility and Elasticity

Type

Technical Requirement

Descrip-
tion

The ELASTIC project aims to develop a novel elasticity concept, defined
as the ability to exploit the underlying infrastructure to automatically
adapt the computing capabilities provided by the pool of resources to
the current workload, while guaranteeing the non-functional
requirements.

Rationale

ELASTIC will exploit elasticity at different computing levels: (a)
horizontal elasticity across the same computing level, i.e., at edge or
at cloud, allowing to dynamically incorporate new compute resources

23

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n lJ | 1V
to the analytics workloads; and (b) vertical elasticity at different
computing levels, i.e. across edge and cloud, allowing to resize existing
computing capabilities by accessing higher computing levels. In both
cases, the ELASTIC software architecture will guarantee the fulfilment
of the non-functional requirements.

ID REQ-SWARCH-TR4

Name Privacy and Security Mechanisms to Guarantee the Legal Framework

Type Technical Requirement

Descrip- | ELASTIC software architecture will incorporate the mechanisms needed

tion to fulfil the Italian and European regulations® regarding privacy in the
collection of data from Florence citizens, and regarding security with
respect to the potential threads that can affect the integrity of the
extreme scale data analytics services.

Rationale | Regarding privacy ELASTIC will incorporate mechanisms at the edge side

to anonymise the information collected from the sensors installed in the
municipality of Florence and tramway vehicle sensors.

Regarding security, it will include the required isolation mechanisms on
the network-side to avoid outside attackers or unauthorized users.

Each TR addresses a BG as defined in Table 19.
Table 19. Relation between business goals and technical goals of the ELASTIC project.

Business Goals Technical Goals

BG1. Interoperability

BG2. Easy-to-use

BG3. Scalability and

REQ-SWARCH-TR1. Increase Software Productivity

Performance
BG4. Real-time REQ-SWARCH-TR2. Fulfilment of Non-Functional
Requirements Requirements

BG5. IT Infrastructure
Cost Reduction

REQ-SWARCH-TR3. Enable Flexibility and Elasticity

Security

REQ-SWARCH-TRA4. Privacy and Security Mechanisms to

BG6. Privacy and Guarantee the Legal Framework

REQ-SWARCH-TR2. Fulfilment of Non-Functional
Requirements

Software Development and Integration Plan

The ELASTIC project involves a distributed team of several people from different
institutions and areas of expertise. This section defines the development and

8 REGULATION (EU) 2016/679 OF THE EUROPEAN PARLAMENT AND OF THE COUNCIL of 27 April 2016
on the protection of natural person; NATIONAL REGULATION (IT) "CODE FOR THE PROTECTION OF
PERSONAL DATA" - DLGS 196/2003, “Smart Road Decree”, Italian Ministry of Transportation
—28/02/2018 - that refers to national regulation, and legislative decree shortly published containing
provisions for the adaptation of national legislation to the Regulation (EU) 2016/679 - GDPR.

24

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n lJ | 1V

integration processes to be followed during the execution of the project, inspired in
the Scrum methodology [18].

Scrum is an iterative and incremental framework for managing product development.
It defines a flexible, holistic product development strategy where a development
team works as a unit to reach a common goal, and enables teams to self-organize by
encouraging close collaboration of all team members. The Scrum process is divided
in Sprints. A sprint is a timeboxed effort restricted to a specific duration. Each sprint
starts with a planning event that identifies the work to be done and makes an
estimated forecast for the sprint goal. Each sprint ends with a sprint review and
sprint retrospective to identify lessons and improvements for the next sprints.

The remainder of this section is organized as follows: Section 4.1 introduces the
development and integration, as well as quality assurance processes for the ELASTIC
project; Section 4.2 defines the infrastructure to be used in the project to enable
all teams to share and coordinate information, and Section 4.3 describes the
standards and guidelines to facilitate the usage of the infrastructure.

Processes

This section introduces two main processes: (1) the development and integration
process, and (2) the quality assurance process. The former focuses on providing
means for a continuous development approach that reduces risks and facilitates the
building and releasing procedures, and the latter focuses on guaranteeing high
quality development results. These processes are specified in the following
subsections, including the activities related to each of the processes.

Development and Integration Process

The ELASTIC project is an aggregation of different components, as defined in the
ELASTIC software ecosystem, which cooperate via specified interfaces to provide
different functionalities (see Section Error! Reference source not found.). The s
oftware architecture integration process consists in the combination of all software
components into one unique ecosystem, ensuring that all components work as
defined in the functional requirements and, the software architecture as a whole,
provided the desired functionalities.

The ELASTIC project consists of four different phases with a milestone at the end of
each phase. Figure 3 shows the integration process of the different components in
the ELASTIC ecosystem considering the different phases and all components. This
integration follows a tree structure and is done incrementally. Each step of the
integration (represented as a diamond) has a leader or master (represented by the
color of the diamond, as described in the legend), which is the responsible for that
particular part of the integration.

25

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

Phase 2 Phase 3 Phase 4

Whole system Whole system

:’_s;a_ti_c_“““-“\: COMPSs [integration] L validation J

Integration

Non-Functional
Requirements

mm
| ==
e

Nuvla

Programming
Model

£
o
s [— & isep
g COMPSs > mm ? — < Bsc
& @
2 | o

Figure 3. Tree-like diagram of the integration of the ELASTIC ecosystem components.

Phase 1. During this phase, the set of non-functional requirements has been
defined to energy, security, real-time and communications instability. As a
result, the API for each component has also been defined in order to allow a
proper communication between with the components. This phase is currently
finishing by the development of all the deliverables, including the current
document, that are to be finished by Milestone 1 of the project.

Phase 2. During this phase, the different components will be developed based
on APIs defined in phase 1 and considering each NFRs separately (i.e., the effects
that one NFR may have on another is not taken into account). Furthermore, the
NFR tool will be integrated with the Distributed Data Analytics Platform (DDAP)
and the Monitor Manager (MM), and the COMPSs orchestrator with be integrated
on one hand with the DDAP and dataClay, and on the other hand with Nuvla and
Konnekt. All these integrations will also consider each NFR separately. The
functionalities of each components, as well as the functionalities of the
integrated components will be verified by using unit tests.

At the end of this phase (Milestone 2), each team has to accomplish the functional
requirements of the corresponding component. The different teams forming the
project will work following a Scrum based approach where different sprints of
approximately one month of duration will be defined.

Phase 3. This phase will be implemented in two stages: the first stage will repeat
the same integration as performed in phase 2, but taking into account all NFRs
at the same time; the second stage will need the coordination of all teams to
integrate all components taking into account all NFR at a global level. Each
integration activity will have a leader (or master in the Scrum terminology)
responsible for the integration. Furthermore, each integration will be validated
by means of both unit tests and regression tests.

26

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

Phase 4. During the last phase of the project, all software components of the
ELASTIC software ecosystem must be validated. By means of the micro-
validations carried out during the integration, unexpected situations are
minimized at this point. Overall, this phase will validate and verify the whole
system regarding the different use-cases defined in the project as well as the
synthetic benchmark described in Section Error! Not a valid bookmark self-
reference.0. All bugs and issues reported during the previous phase will be
addressed by the end of this phase, leaving the project free from known errors,
hence validating the functional and non-functional requirements expected for
both, the components separately, and the system as a whole.

In order to have a general overview, Figure 4 shows the Gantt chart of the full
integration plan containing a high-level description of the different tasks included in
the integration plan, as well as the different milestones of the project as defined in
the DoA [19].

Task Name 2018 |Qir1,2019 |Qir2,2019 |Qir3,2019 [Qi4,2019 [Qir1,2020 _|Qir2,2020 |Qir3,2020 _|Qir4,2020 |Qir1,2020 |Qtr2,2
Wov [Dec | Jan | Feb | Miar | Apr [May] Jun | Jul | Aug [Sep | Oct | Nov | Dec | Jan | Feb [Mar| Apr [May [Jun | Jul | Aug | Sep | Oct | Nov] Dec | Jan | Feb [Mar| Apr [May [un | u
- Phase 1. Requirements specification ——
Specification of the functional requirements (all WPs) _——————
Specification of the non-functional requirements (all WPs) e
Set up new 10T sensors in Florence (WP1) L]
Set up de ELASTIC fog architecture (WPS) L —
Ms1. Requirements specification [
Phase 2. Elasticity across the compute continuum considering a single
non-functional property
Develop first version of the use-case (WP1) —
e sensing network and enrich the data-sets (WP1) —
g models (WP2) ——
n of the elasticity concept (WP3) ——
onitoring of the NFR in all software components (W! —

021 |atr3,2021 |Qtr4,2021
Aug | Sep | Oct | Nov | Dec

implement the fog architecture (WPS) ——
Refine APIs (WP3) CE——
Verification (all WPs) [
- Integration (isolated NFRs) —
NFR with DDAP and MM (ISEP) [====]
COMPSs with NFR, DDAP and MM (BSC) [
s DDAP and dataClay (8SC) [=———=]
1a and Konnekt (SIX) [———]
plan (WP3) [S—————]
lering a single NFR]
= Phase 3. Elasticity across the compute continuum considering all non-functio
properties
Complete the development of the software architecture (WP1)

Complete real-time stream processing and enhance the learning models (.
Complete the elasticity concept (WP3)
Deliver the fog architecture (WPS)
n (all WPs)
(all NFRs) p—
DDAP and MM (ISEP)
COMPSs with NFR, DDAP and MM (8SC)
DDAP and dataClay (8SC)
Nuvla and Konnekt (S1X)
lering all NFR

phase
Verification of the whole software architecture
Ms4. Validation phase

Figure 4. Gantt chart of the development and integration plan of the ELASTIC project.

4.1.2 Quality Assurance Process

The ELASTIC software developers’ team is a highly distributed team of teams. This
scenario requires taking special care of the communication and interconnection
among the different teams. With such a purpose, several activities will be carried
at, so the project provides high quality standards in terms of faults and compliance
with specified behavior. These activities will occur at different stages of the
development process. Some of them are continuous and some others are recurring.
This section summarizes the quality assurance activities performed in the
development and integration process of the ELASTIC project.

4.1.2.1 Scrum-based Methodology

The Scrum methodology reduces risks and removes dependencies between releases
and integration activities, allowing the synchronization of the different integration
parts and the final validation. An important aspect included in the methodology is
the recognition that there will be unpredictable challenges. For that reason, Scrum
adopts an evidence-based empirical approach focusing on how to maximize the

27

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

team's ability to deliver quickly, to respond to emerging requirements, and to adapt
to evolving technologies and changes in the project conditions.

In Phases 1 and 2, each team in ELASTIC will define its own sprints regarding contents
and duration, because each team is to work in isolation. After that, in Phases 3 and
4, all teams in the project will have to define a common structure for the sprints,
according the duration and contents of each sprint.

During Phases 1 and 2, a synthetic benchmark (see Section 0) will be developed and
used together with unit tests in order to validate the functionalities implemented in
each component. These unit tests will allow determine if individual units of code are
correct, simplifying the later integration and facilitating future changes. Each time
a new functionality is to be added to the software ecosystem, the entire unit test
suite should be executed, ensuring that all new and existing tests run successfully
upon code check in. To enhance the quality of the unit tests, a series of guidelines
shall be used, e.g., name tests properly, keep tests small and fast, cover boundary
cases, and prepare tests for code failing.

Initially, unit tests are to be tested manually by each component’s developers. A
system such as JUnit [20] (for Java) or GoogleTest [21] (for C/C++) can be used with
such a purpose, depending on the base language used for the particular component.
In a second stage, in order for the unit testing to be useful, the tests are to be
performed automatically by a continuous integration system, as explained in Section
4.2.2.2.

During the integration, changes to the implementation may be needed. In such case,
regression tests shall be run each time a modification is implemented in any part of
the software ecosystem, so it can be determined whether the changes break anything
that worked prior to the change. Regression tests, overall, consist on rerunning
previous tests any time a modification is performed, as well as writing new tests
when necessary. Adequate coverage is paramount when conducting regression tests.
For that reason, a series of strategies and good practices must be followed, e.g.,
check possible side effects when fixing bugs, write regression tests for each bug
fixed, and remove redundant tests.

Bug and issue trackers allow managing lists of bugs and issues. This kind of
application is used to create, update and resolve project issues, providing the
platform to maintain a knowledge base that includes information that may help to
resolve the issues. During the integration phase this is a key aspect to ensure the
correct collaboration and communication among the different teams that participate
in the integration of each particular component. In general, issue trackers have
proven to be an effective lightweight task management system, much more useful
than real-time messaging o emailing.

For this task, the ELASTIC project will use GitLab [22]. Further details are included
in Section 4.2.3.1.

28

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

Infrastructure

This section describes the tools and platforms that we have identified to potentially
be used within the ELASTIC project. Infrastructure decisions are based on consortium
agreements and are triggered by common development standards as well as in
particular the quality assurance and integration processes described in Section 0.

Development Platform

This section defines the platforms that will be used for the development of the
ELASTIC project.

We will select free and open source IDEs because this kind of platform provides
several benefits:

e Code completion or code insight: IDEs recognize language’s keywords and
function names. This knowledge is typically used to highlight typographic
errors, suggest a list of available functions based on the appropriate situation,
or offer a function’s definition from the official documentation.

e Resource management: IDEs manage resources such as libraries and header
files, hence being aware of any required resource missing. By using this
feature, errors can be spotted at the development stage and not later, in the
compile or build stage.

e Debugging tools: IDEs allow thoroughly testing applications before release by
means of assigning variable values at certain points, connecting different
data repositories, or accepting different run-time parameters.

e Compile and build: IDEs allow automatic translation from high-level language
to object code for languages that require a compile or build stage.

Some of the IDEs that may be used in the ELASTIC project are listed as follows:

e Eclipse [23] comprises a Rich Client Platform (RCP) for developing general
purpose applications, and includes a powerful plug-in system. Components
such as COMPSs will be developed using this framework. Other IDEs will be
considered as well, depending on each partner requirements.

e Atom [24] is a free and open-source text and source code editor with support
for plugins written in Node.js, and embedded Git Control, developed by
GitHub. It provides a desktop application easy to extend, where most of the
extending packages have free software licenses.

Software configuration management systems provide means for distributed teams to
work collaboratively together on shared documents. Within ELASTIC, development
will be carried out using two different such platforms:

e Apache Subversion (SVN) [25]. SVN is a tool for source code versioning. It
comprises a centralized repository for collaboration, and also allows
managing different development lines in so called branches. SVN provides
online versioning of directories, files and metadata. Other functionalities
offered by SVN include conflict resolution and merging. SVN will be used in
ELASTIC for sharing documentation such as deliverables, technical reports,
papers and posters, among others.

29

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

e Git [26]. Git is a free and open source distributed version control system able
to handle very large projects with speed and efficiency, because it has a tiny
footprint and includes features like cheap local branching, convenient staging
areas, and multiple workflows. Git will be used in ELASTIC for sharing code
source. It is particularly convenient within the ELASTIC project, where a very
distributed team develops in parallel several components, because its support
for submodules Git submodules allow to treat different projects as separate,
yet still be able to use one from within the other.

Communication is of paramount importance in the development and integration
process, particularly, when working in remote teams composed of many people. For
such a reason, not only communication but also transparency is needed, because
everybody must be aware of what is happening in all sides in order to participate or
even plan their own work.

Slack [27] is a team communication tool that provides many benefits. The most
significant to the project are listed below:

e Integrates all team communications in one place. Furthermore, the
communications can be segmented into channels, organized by topics, and
different users can be assigned to each channel, depending on the visibility
the channel must have.

¢ Integrates other web services, e.g., GitHub, for notification and viewing code
check-ins, and Dropbox and Google Drive, for file sharing.

e All content is searchable from one search box. Communications between
several people can lead to large amounts of information that is later hard to
find. Slack search filter options narrow the search on the conversations to
specific channels, persons, or many other filters.

e Code snippets sharing. Slacks supports sharing code snippets with specific
syntax highlighting. The platform also supports other members to download
it, view it in a raw mode, or leave comments and modifications.

Integration Platform

This section defines the platforms that will be used for the integration of the ELASTIC
project.

Different components of the ELASTIC project will use the Apache Maven [28]
automated build system. Apache Maven is a project management and comprehension
tool that manages project building, reporting and documentation from a central
place. The primary goals of this platform are: (1) making the build process easy, (2)
providing a uniform build system, (3) providing quality project information, (4)
providing guidelines for best practices development, and (5) allowing transparent
migration to new features.

Within the ELASTIC project, Maven will be used, at least, for the development and
integration of COMPSs features. Since it is a Java tool, it also requires the Java SDK.

30

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n lJ | 1V

A continuous integration system, such as Jenkins [29] will be used to automatize the
integration of the software components as well as for testing. Such a system focuses
on two jobs:

1. Building and testing software projects continuously. Jenkins provides a
flexible continuous integration system, making it easy for developers to
integrate changes to the project, and making it easy for users to obtain a
fresh build. The automated, continuous build increases the productivity.

2. Monitoring executions of externally-run jobs. This includes jobs such as cron
jobs or jobs that are run on remote machines. The results of these jobs are
kept by Jenkins, as well as sent to developers by email. Any form of checking
these results allows developers to notice when something is wrong faster and
easier than using traditional testing mechanisms.

Quality Assurance Tools

This section covers the quality assurance tools used within the ELASTIC project to
provide means to test and control code and thus system quality.

The ELASTIC project will use GitLab [22] to track issues and feature requests. This
application enables lean and agile project management from basic issue tracking to
scrum project management. Specifically, it allows:

e Manage and track issues: (1) collaborate and define specific business needs,
(2) track effort, size, complexity, and priority of resolution, and (3) eliminate
silos and enable cross-functional engagement.

e Visualize work with issue boards: (1) visualize the status of work across the
lifecycle, (2) manage, assign and track the flow of work, and (3) enable
Kanban and Scrum styles of agile delivery.

e Maintain traceability through the DevOps Pipeline: (1) link issues with actual
code change needed to resolve issues, (2) visualize and track the status of
builds, testing, security scans, and delivery, and (3) enable entire team to
share a common understanding of status.

Standards and Guidelines

Development guidelines provide a basic set of rules to enforce consistent and
standardized coding practices. These guidelines are even more vital in a distributed
software development project with teams at geographically separated locations. The
guidelines in this section assure code quality and complement the processes defined
in Section 0.

Design Patterns

Within ELASTIC, developers will use design patterns when applicable. Design patterns
[30] are time-tested solutions to recurring design problems and offer several
benefits:

1. Provide solution to issues in software development using a proven solution.
2. Design patterns make communication between designers more efficient.
3. Facilitate program comprehension.

31

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

Code Comments

Code comments help to explain and describe the actions of a certain block of code,
describing behaviors that cannot otherwise be clearly expressed in the source
language and easing comprehension. ELASTIC developers will comment crucial parts
in the source code to help other developers understand their code.

In spite of numerous benefits of having properly commented source code, comments
can be misguiding if not used properly. Thus a few points worth consideration while
writing comments are:

1. Comments can get out of sync with the code if people change the code
without updating the comments. Thus, comments should always change
together with code.

2. Good comments are hard to write and time consuming, but pay off in long
term.

3. Adding comments can be counter-productive if the information provided by
them is not relevant to the part of code where they are provided. Hence,
inline comments should describe the next line of code.

Programming Style

Programming style is a set of rules or guidelines used when writing the source code.
These guidelines include elements common to a large number of programming styles
such as the layout of the source code, including indentation, the use of white space
around operators and keywords, the capitalization of keywords and variable names,
the style and spelling of user-defined identifiers, such as function, procedure and
variable names; and the use and style of comments.

Since the ELASTIC project will include several components that are already under
development and follow their respective programming styles, developers in the
frame of the ELASTIC project will follow these styles. For those parts of code which
purpose is integrating different components of the ELASTIC ecosystem, the involved
partners will define the programming style together the APIs specified in Section
Error! Reference source not found..

The COMPSs Software Component

General Description

COMPSs will be the main software component that will form the orchestrator layer
of the ELASTIC ecosystem (see Figure 1).

COMPSs provides a complete framework, composed by a programming model and a
runtime system, enabling the development of parallel applications for distributed
infrastructures at a very low cost because of two main reasons: (1) the model is
based on sequential programming on top of popular programming languages (i.e.,
Java, Python and C/C++), meaning that users do not have to deal with the typical
duties of parallelization and distribution (e.g., thread creation, data distribution,
fault tolerance, etc.); and (2) the model abstracts the application from the
underlying distributed infrastructure, hence COMPSs programs do not include any
detail that could tie them to a particular platform (e.g., deployment or resource
manager) boosting portability among diverse infrastructures and enabling execution
in a fog environment.

32

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

COMPSs applications are composed of three parts: (1) the main program, which is
the code that is executed sequentially and contains calls to the user-selected
methods that are to be executed as asynchronous tasks; (2) the remote methods,
also called Core Elements (CEs), which are the implementations of the tasks; and (3)
the annotated interface, which declares methods to be run as remote tasks along
with metadata needed by the runtime to properly schedule tasks (e.g., the priorities
of the tasks, the dependences among tasks, etc.).

5.2 Run-time Internals

Currently, the COMPSs runtime is organised in a master-worker structure (depicted
in Figure 5):

(a) The master part executes in the resource where the application is launched, i.e.,
where the main program runs, and is responsible for steering the parallelisation
of the application, as well as for implementing most of the features of the
runtime concerning task processing and data management.

(b) The worker side is in charge of responding to task requests coming from the
master, although in some designs such as clusters it also has data transfer
capabilities, and it can be transient (i.e., a new runtime process is started every
time a task request arrives) or persistent (i.e., a process remains in the resource
all along the application lifetime).

4)

Master

Application:
main program

{ L (Worker

Engine Resources

Monitor Access Task ST Application:
executor processor dispatcher remote methods

manager {}
Access
Ada ptors COMPSs
worker
Cloud

connectors

Resource
provider

T

Figure 5. Single COMPSs framework overview.

Within the ELASTIC project, different COMPSs workflows may coexist (in different
edge nodes and in the cloud), meaning that devices that behave as master in a

33

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

COMPSs framework, may behave as worker in a different COMPSs framework, leading
to a worker-worker structure.

Sequential Application Distributed Resources

[Task Dependency Graph }
c Resource 1
; o
T1 (datal,data2); g @ @ Data
T2 (data3,data4) ; = transfer
(]
T3 (data2,data4d4,datab) ;
:E, e @ Resource 2
T4 (data6,data7) ; ..E
75 (data5,data7, datas) ; | = e @
\77777// rosk dependences Data transfer . ResourceN

analysis Task +
+ scheduling Task submission &
Data renaming monitoring

Figure 6. Execution pipeline of a COMPSs application.

The execution of a COMPSs program (summarized in Figure 6) involves the following
stages:

1. Instrumentation of the main program. The first phase of the execution of a
COMPSs application consists of two parts: first, the methods selected by the
programmer are replaced by the asynchronous creation of their associated tasks,
and then the data accesses specified for these methods are checked in order to
ensure the sequential memory consistency.

2. Data dependence analysis. As the main program runs, the runtime receives task
creation requests. The data consumed and produced by the task is used by the
data dependence analysis mechanism, which dynamically builds a Task
Dependency Graph whose nodes are tasks, and whose arrows symbolise the
dependences. This graph represents the workflow of the application and imposes
what can and cannot be run concurrently.

3. Data renaming. In order to expose more parallelism in the applications, data
causing Write-after-Read (WaR) and Write-after-Write (WaW) dependences is
renamed. The runtime keeps track of all data accessed by the application and
the versions of this data created after the renaming process; hence it can
guarantee the sequential memory consistency of the application.

4. Task scheduling. A task remains in the Task Dependency Graph until all its
predecessors have completed, hence its dependences are solved. Then, using
the list of worker resources the runtime is provided with, if the runtime is able
to find an available resource, the task is scheduled. Otherwise, the task is added
to a queue of pending tasks waiting for a free resource. Different policies allow
mapping tasks to resources (e.g., based on data locality, in a round robin
fashion, etc.). Additionally, there is a pre-scheduling mechanism is offered in
the runtime in order to send the data needed by a task before the task can be
executed, overlapping computation and communication. This way, when the
processor where the task is to be executed gets free, the task can be submitted
without waiting for any transfer.

34

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

5. Task submission, execution and monitoring. Once a task is ready to be executed,
its input data is transferred and the target resource is free, then the master
runtime asynchronously submits the task and registers the notifications coming
from the worker resource informing about the completion of the task. In the
worker resource, the worker part of the runtime is in charge of executing the
task. Furthermore, the master runtime implements a fault-tolerant mechanism
that allows for retrying the submission either in the same resource or in a
different one. Finally, when the task completes, the runtime removes it from
the Task Dependency Graph.

For the integration of COMPSs into the ELASTIC ecosystem, information about the
NFR must be added to the scheduler. This will allow meeting the NFR expected by
the user with the properties provided by the different components of the fog
environment in terms of time, energy, security and communication features. In this
regard, COMPSs applications, particularly the tasks that are to be executed
asynchronously, shall be enriched with information to better characterise the NFR
(e.g., priority, deadline, period, energy budget, safety integrity level) when
necessary. Furthermore, the different resources shall provide timing properties
(current workload) as well as the programming model supported. With this
information, an enhanced version of the COMPSs scheduler shall be able to meet the
requirements of the ELASTIC use-cases with the properties of the resources.

Interface with the Underlying Computing Devices

An important feature of COMPSs is the capability to execute applications
transparently with regards the underlying infrastructure. With such a purpose,
COMPSs implements the interaction between the runtime and the computational
resources (i.e., physical resources or VMs) by means of different adaptors, each
implementing the specific providers APIs. This mechanism makes possible the
execution of computational loads on fog environments without the need of adapting
the code, hence providing scalability and elasticity properties. Currently, there are
two adaptors implemented: (1) Non-blocking 1/0, NIO, which offers high
performance in secured environments, and (2) GAT, which offers interoperability
with diverse kinds of Grid middleware.

Together with the adaptors, the COMPSs runtime uses connectors to communicate
with the cloud managers. Each connector implements the interaction of the runtime
with a given provider's API, supporting four basic operations: (1) ask for the price of
a certain VM in the provider, (2) get the time needed to create a VM, (3) create
a new VM and (4) terminate a VM. This design allows connectors to abstract the
runtime from the particular API of each provider and facilitates the addition of new
connectors for other providers. Currently COMPSs implements four different
connectors: (1) rOCCI (ruby Open Cloud Computing Interface) [10], (2) JClouds [11],
(3) Docker [12], and (4) Mesos [13]. Although COMPSs provides many features for
managing the cloud transparently, there is an important aspect that the framework
does not take into account: the NFR imposed by the applications that will run on top
of the ELASTIC ecosystem. For this reason, COMPSs will interact with both, the NFR
tool and the hybrid fog computing platform (see Figure 1). In that regard, a new
COMPSs connector will be implemented.

Flexibility is one of the main features of COMPSs. With that in mind, COMPSs has
been integrated with several programming models in order to better exploit the
capabilities of the different target architectures. This means the COMPSs
programmers can define computing elements in several programming languages: (a)

35

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

OpenCL [31], for GPGPU programming [6], (b) OmpSs [15] for CPU, GPU and Cluster
programming, or (c) MPI [32], for Cluster programming. The integration between
COMPSs and OmpSs is particularly interesting, because OmpSs further integrates
other programming languages such as CUDA [16], OpenCL and MPI [32]. This means
that COMPSs not only allows for flexible, programmable and portable programming
of both edge and cloud devices, but also supports a performance-aware environment
where specific programming models can be used to exploit the special features of
each target architecture.

Acronyms and Abbreviations

CPS - Cyber-Physical System

DoA - Description of Action (Annex 1 of the Grant Agreement)
HPC - High Performance Computing
loT - Internet of Things

M/R - Map / Reduce

MS - Milestones

NFR - Non-Functional Requirements
VM - Virtual Machine

WP - Work Package

TR - Technical Requirement

BG - Business Goal

Bibliography

[1] ELASTIC, “D2.5. Distributed data analytics platform requirements,” MS1, 2019.

[2] ELASTIC, “D4.2. Non-functional properties analysis and constraints
specification,” MS1, 2019.

[3] ELASTIC, “D5.1. General requirements of the fog architecture,” MS1, 2019.
[4] Apache, “Apache Spark, https://spark.apache.org”.

[5] U. B. Riselab, “Pywren, https://rise.cs.berkeley.edu/projects/pywren/,”
2019.

[6] F.Lordan, R. M. Badia and W.-M. Hwu, “Enabling GPU Support for the COMPSs-
Mobile Framework,” in International Workshop on Accelerator Programming
Using Directives, 2017.

[7] U. B. RiseLab, “Ray, https://rise.cs.berkeley.edu/projects/ray/,” 2019.
[8] Apache, “Flink, https://flink.apache.org,” 2019.
[9] Apache, “Kafka, https://kafka.apache.org,” 2019.

[10] “A Ruby OocCcl Framework,” 2013. [Online]. Available:
https://github.com/ffeldhaus/rOCCI.

[11] “Apache jclouds®,” 2018. [Online]. Available: https://jclouds.apache.org/.

36

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n J | 1V

[12] “Docker,” 2018. [Online]. Available: https://www.docker.com/.
[13] “Apache Mesos,” 2018. [Online]. Available: http://mesos.apache.org.
[14] "OpenMP," 2018. [Online]. Available: www.openmp.org.

[15] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell and J.
Planas, “OmpSs: a Proposal for Programming Heterogeneous Multi-Core
Architectures,” Parallel Processing Letters, vol. 21, no. 2, pp. 173-193, 2011.

[16] NVIDIA, “CUDA C Programming Guide,” 2018. [Online]. Available:
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[17]1 E. Consortium, “Deliverable 4.2. Non-functional properties analysis and
constraints specification,” May 2019.

[18] K. Schwaber and M. Beedle, Agile Software Development with Scrum, vol. 1,
Prentice Hall Upper Saddle River, 2002.

[19] Grant Agreement Description of Action (DoA), 2017.
[20] "JUnit 5," 2018. [Online]. Available: junit.org/junit5/.

[21] "Google Test,” 2018. [Online]. Available:
https://github.com/google/googletest.

[22] GitLab, "The first single application for the entire DevOps lifecycle,” 2019.
[Online]. Available: https://about.gitlab.com/.

[23] The Eclipse Foundation, "Enabling Open Innovation & Collaboratio,” 2018.
[Online]. Available: http://www.eclipse.org/.

[24] "Atom,"” 2018. [Online]. Available: https://atom.io/.

[25] "Apache Subversion," 2018. [Online]. Available:
https://subversion.apache.org/.

[26] "Git," 2018. [Online]. Available: https://git-scm.com/.
[27] Slack, "Where work happens,” 2019. [Online]. Available: https://slack.com/.

[28] "The Apache Maven Project,” 2018. [Online]. Available:
https://maven.apache.org/.

[29] "Jenkins,” 2018. [Online]. Available: https://jenkins.io/.

[30] E. Gamma, R. Helm, J. Vlissides and R. E. Johnson, "Design Patterns Elements
of Reusable Object-Oriented Software," in Addison-Wesley, 2000.

[31] J. E. Stone, D. Gohara and G. Shi, “OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems,” Computing in Science & Engineering,
vol. 12, no. 3, pp. 66-73.

[32] “MPI: A Message-Passing Interface Standard, version 3.1,” 2015. [Online].
Available: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[33] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

37

D3.1 Software architecture requirements and integration plan

Version 1.0 L L n d | 1V

[34] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J.
Rose, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker and
I. Stoica, “Apache Spark: a Unified Engine for Big Data Processing,”
Communications of the ACM, vol. 59, no. 11, pp. 56-65, 2016.

[35] E. Jonas, S. Venkataraman, I. Stoica and B. Recht, “Occupy the cloud:
distributed computing for the 99%,” in Proceedings of the 2017 Symposium on
Cloud Computing, 2017.

[36] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez, F. Marozzo, D. Lezzi,
R. Sirvent, D. Talia and R. M. Badia, “ServiceSs: an interoperable programming
framework for the Cloud,” Journal of Grid Computing, vol. 12, no. 1, p. 67-91,
2014.

[37] R. M. Badia, J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan, C. Ramon-
Cortes and R. Sirvent, “Comp Superscalar, an Interoperable Programming
Framework,” SoftwareX, vol. 3, pp. 32-36, 2015.

[38] “ELASTIC Grant Agreement Description of Action (DoA),” 2018.

38

