

D3.2 Refined requirements and
integration plan

Version 1.0

Document Information

Contract Number 825473

Project Website https://elastic-project.eu/

Contractual Deadline M15, February 2020

Dissemination Level PU

Nature R

Author(s) Maria A. Serrano, Elli Kartsakli (BSC)

Contributor(s)

Cristina Zubia, Marco González, Álvaro González,
Xabier Pérez (IKL); Luis Miguel Pinho, Luis Nogueira
(ISEP); Cristóvão Cordeiro (SIX); César Marin (ICE);
Marco Merlini (THALIT); Anna Queralt (BSC)

Reviewer(s) Cristóvão Cordeiro (SIX)

Keywords software development ecosystem, software
architecture, integration plan

Notices: The ELASTIC project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the
grant agreement Nº 825473.

© 2019 ELASTIC. A Software Architecture for Extreme-ScaLe Big-Data AnalyticS in Fog
CompuTing ECosystems. All rights reserved.

D3.2 Refined requirements and integration plan
Version 1.0

2

Change Log

Version Author Description of Change

V0.1 Maria A. Serrano
(BSC) Initial Draft

V0.2
Elli Kartsakli

(BSC)
Revised version, missing the integration sprints

V0.3
Elli Kartsakli

(BSC)
Included integration sprints, missing two
contributions

V0.4
Cristóvão Cordeiro,

(SIX)
Revised version, missing one contribution

V1.0 BSC Final Version. Ready to be submitted.

D3.2 Refined requirements and integration plan
Version 1.0

3

Table of contents
Change Log .. 2

1. Executive Summary ... 4

2. Requirements of the ELASTIC Software Architecture 5

3. Development and integration plan ... 5

3.1 Scrum-based methodology ... 5

3.1.1 Distributed data analytics platform ... 6

3.1.2 COMPSs orchestrator .. 7

3.1.3 dataClay – Distributed Storage ... 9

3.1.4 Energy and time non-functional requirements – NFR tool 11

3.1.5 Communication and security non-functional requirements – NFR tool 13

3.1.6 Communication middleware – Fog computing architecture 15

3.1.7 KonnektBox – Fog computing architecture 17

3.1.8 Nuvla/NuvlaBox – Fog computing architecture 19

3.1.9 Software architecture validation for the use cases 21

3.1.10 Use case related sprints .. 22

3.2 Version control systems .. 27

3.3 Continuous Integration (CI) system ... 28

3.4 Instant messaging and transparency .. 29

3.5 Pending issues ... 30

4. Acronyms and Abbreviations .. 31

5. References ... 31

D3.2 Refined requirements and integration plan
Version 1.0

4

1. Executive Summary

This deliverable covers part of the work done during the second phase of the project
(M7-M15) within WP3, mainly regarding Task 3.1 "Software architecture requirements
specification", to reach milestone MS2.

Specifically, this deliverable provides a description of the work carried out within
the frame of the integration plan during the second phase of the project. The
deliverable will also provide a short summary of the software architecture
requirements, since no modifications have been made with respect to their initial
definition in D3.1 [1].

The second milestone of Task 3.1 has been carried out successfully and all objectives
of MS2 have been reached and documented in this deliverable.

D3.2 Refined requirements and integration plan
Version 1.0

5

2. Requirements of the ELASTIC Software Architecture

The technical requirements of the ELASTIC Software Architecture have been
extensively defined in Deliverable D3.1 [1]. In particular, after taking into
consideration the main challenges for Big Data stakeholder ecosystems defined
within the Strategic Research and Innovation Agenda (SRIA), a set of six business
goals and four technical requirements has been identified and described in D3.1, and
summarized for convenience in Table 1.

D3.1 provided a first description of the ELASTIC Software Development ecosystem
and its software components to accomplish the aforementioned technical
requirements and business goals. A redefined version of this ecosystem, still fulfilling
the same set of requirements, is provided in Deliverable D3.3 “ELASTIC software
architecture – First release” [2], where all modifications to the software components
and interfaces with respect to the initial planning of D3.1 are fully described.
Table 1. Business goals and technical requirements of the ELASTIC Software Architecture

Business goals Technical requirements

BG1. Interoperability

REQ-SWARCH-TR1. Increase Software Productivity BG2. Easy-to-use

BG3. Scalability and Performance

BG4. Real-time Requirements REQ-SWARCH-TR2. Fulfilment of Non-Functional
Requirements

BG5. IT Infrastructure Cost Reduction REQ-SWARCH-TR3. Enable Flexibility and Elasticity

BG6. Privacy and Security

REQ-SWARCH-TR4. Privacy and Security
Mechanisms to Guarantee the Legal Framework
REQ-SWARCH-TR2. Fulfilment of Non-Functional
Requirements

3. Development and integration plan

D3.1 [1] introduced the development and integration plan defined for the ELASTIC
project. In this regard, this section describes the work done since milestone MS1 to
reach MS2, including both methodologies and tools.

3.1 Scrum-based methodology
The distributed nature of the several teams involved in the ELASTIC project led us
to define a Scrum-based methodology [3] for the development of the project in D3.1.
This strategy allowed us to define common goals together with a series of tasks to
identify and execute the work to be done. The following subsections describe the
sprints considered by each partner in the phase 2 of the project (months 7 to 16).
Each team has worked in semi-isolation to develop the functionalities of the different
components, based on the requirements and APIs defined during Phase 1. For that
reason, the sprints are defined separately for the development of different
technological components of the software architecture. Furthermore, sprints for the
ADAS/NGAP use case are also presented, since scrum-based methodology has been
also adopted for the preparation of the software and hardware platform of this
specific use case.

D3.2 Refined requirements and integration plan
Version 1.0

6

3.1.1 Distributed data analytics platform

Distributed data analytics platform – Sprint 1

Duration June 1 – September 30, 2019

Goal Definition of solution for distributed analytics

Planning Define an architecture for analytics tools based on Spark.

Review Completed

Retrospective Architecture slightly out of the scope. Redesign

Distributed data analytics platform – Sprint 2

Duration October 1 – November 30, 2019

Goal Redefinition of solution for a distributed data analytics platform (DDAP)

Planning Define an architecture for a platform for distributed analytics. Solution to
be supported by Spark and Druid.

Review Completed

Retrospective dataClay still has to be considered as part of the architecture

Distributed data analytics platform – Sprint 3

Duration December 1-31, 2019

Goal First try at ingesting data using DDAP

Planning First attempt at deploying Druid and ingesting some data available from
the transport infrastructure.

Review Completed

Retrospective dataClay still have to be considered as part of the architecture

Distributed data analytics platform – Sprint 4

Duration January 1-31, 2020

Goal Redesign of DDAP to include dataClay

Planning Update architecture picture to include dataClay as part of DDAP, including
deployment at transport infrastructure.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

7

Distributed data analytics platform – Sprint 5

Duration February 1, 2020 (ongoing)

Goal Attempt to deploy DDAP at ICE and make it available to partners

Planning Deployment of DDAP components, mainly Druid and Spark. Ingest data
from transport infrastructure on a more regular basis.

Review In progress

Retrospective dataClay still not deployed

3.1.2 COMPSs orchestrator

COMPSs orchestrator – Sprint 1

Duration June 1-30, 2019

Goal Design heuristics algorithms

Planning Identify and adapt several heuristics to the scheduling process in COMPSs.

Review Completed

Retrospective -

COMPSs orchestrator – Sprint 2

Duration July 1-31, 2019

Goal Implement adaptive feature for the COMPSs scheduler

Planning Implement the designed algorithms, considering both online and offline
timing analysis, to be integrated as an eligible COMPSs scheduler strategy.

Review Completed

Retrospective -

COMPSs orchestrator – Sprint 3

Duration August 1-31, 2019

Goal Design the containerized deployment of a COMPSs workflow

Planning Research on container technologies and approaches for containerized
deployments and on how to adapt COMPSs to containerized deployment.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

8

COMPSs orchestrator – Sprint 4

Duration September 1-30, 2019

Goal Design of the integration between the NFR tool and COMPSs by using
dataClay

Planning Develop the data model needed to communicate COMPSs and the NFR
monitoring tool, to enable the monitoring of the available resources.

Review Completed, a data model has been agreed among the involved partners

Retrospective -

COMPSs orchestrator – Sprint 5

Duration October 1 – November 30, 2019

Goal Migrate containerized deployment of COMPSs to a generic cloud scenario

Planning Research on the most popular cloud platform and environments and how
they work. Design an integration with COMPSs.

Review Completed

Retrospective -

COMPSs orchestrator – Sprint 6

Duration December 1-31, 2019

Goal Implement the initial NFR tool integration with COMPSs

Planning Implement the interaction between COMPSs and the NFR tool in order to
update the list of available resources able to execute COMPSs tasks.

Review Complete

Retrospective This is the initial integration for MS2.

COMPSs orchestrator – Sprint 7

Duration February 1-29, 2020

Goal Prepare documentation

Planning Completion of the deliverables with the outcome of the previous tasks.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

9

3.1.3 dataClay – Distributed Storage

dataClay - Sprint 1

Duration June 1-30, 2019

Goal Allow federated devices to leave the infrastructure

Planning Provide an un-federation mechanism so that data can be kept if needed,
but not synchronized with devices that left.

Review Completed

Retrospective
Un-federation method as well as auxiliary methods to facilitate re-
federation with other devices provided. Extensive testing of various
foreseen situations with moving devices.

dataClay - Sprint 2

Duration July 1-31, 2019

Goal Run dataClay on Jetson boards

Planning Reduce footprint and improve performance of dataClay.

Review Completed

Retrospective Extensive testing of a dataClay instance in isolation and federated with
other instances

dataClay - Sprint 3

Duration August 1-31, 2019

Goal Improve deployment with Docker

Planning Simplify Docker compose, minimize ports exposed, add health-check,
move configuration variables from file to Docker compose.

Review Completed

Retrospective -

dataClay - Sprint 4

Duration September 1-30, 2019

Goal Dockerize dataClay management functionalities

Planning
Containerize the dataClay command-line utility for model and user
management so that Java or Python don’t need to be installed in the
client machine.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

10

dataClay - Sprint 5

Duration September 1 – October 31, 2019

Goal Facilitate synchronization to the developer

Planning

Provide a pre-defined synchronization mechanism that can be
incorporated to the necessary classes in the model, by importing a class
(Java) or inheriting from a mixin (Python) already implementing the
behavior.

Review Completed

Retrospective -

dataClay - Sprint 6

Duration October 1 – November 30, 2019

Goal Provide an integrated deployment of COMPSs and dataClay

Planning
Facilitate deployment of COMPSs and dataClay using dockers, and develop
examples of applications using both tools simultaneously so that other
partners can easily use them in combination.

Review Completed

Retrospective -

dataClay - Sprint 7

Duration December 1-31, 2019

Goal Publish dataClay in Maven central repository

Planning Facilitate the use of dataClay from Java applications.

Review Completed

Retrospective -

dataClay - Sprint 8

Duration December 1, 2019 – January 31, 2020

Goal Design integration with the DDAP

Planning
Design how the different tools involved (COMPSs, Spark, Druid and
dataClay) can be integrated to provide the appropriate Distributed Data
Analytics functionalities required by the use cases.

Review Completed

Retrospective Done in collaboration with ICE

D3.2 Refined requirements and integration plan
Version 1.0

11

dataClay - Sprint 9

Duration January 1 - February 29, 2020

Goal Improve performance of storing new objects and not limit their size

Planning

Optimize the workflow by reducing interactions between dataClay
components, removing unnecessary functionality, and using more efficient
data structures. Enable storage of objects as big as allowed by the
memory of the machine.

Review Completed

Retrospective -

dataClay - Sprint 10

Duration February 1-29, 2020

Goal Implement a dataClay model for the integration of the NFR tool and
COMPSs

Planning
Initial version of the model agreed by the involved components so that
they can share the control data required to perform their functions.
Sample NFR-inspired application provided as a guide.

Review Completed

Retrospective -

3.1.4 Energy and time non-functional requirements – NFR tool

Energy and time non-functional requirements - Sprint 1

Duration June 1-30, 2019

Goal Timing and CPU load tool analysis

Planning Research on the generally available Linux tools to determine execution
times (per process) and CPU load (per process and per node).

Review Completed

Retrospective -

Energy and time non-functional requirements - Sprint 2

Duration July 1-31, 2019

Goal Development of execution time and CPU load probes

Planning
Using selected Linux tools from previous analysis, develop software probes
that report the execution times of processes and CPU load (per process
and per node).

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

12

Energy and time non-functional requirements - Sprint 3

Duration September 1 – October 31, 2019

Goal Power and energy consumption tool analysis

Planning
Research on the generally available Linux tools and techniques to
determine/infer power and energy consumption (per process and/or per
node) and temperature (per core and per node).

Review Completed

Retrospective -

Energy and time non-functional requirements - Sprint 4

Duration November 1-30, 2019

Goal Development of power and energy consumption probes

Planning
Using selected Linux tools from previous analysis, develop software probes
that report the power and energy consumption (per process and/or per
node).

Review Completed

Retrospective -

Energy and time non-functional requirements - Sprint 5

Duration December 1, 2019 – January 31, 2020

Goal Integration of probes with NFR tool

Planning

Development of an NFR tool that based on detected execution time and
CPU load NFR violations determines an ELASTIC redeployment of tasks.
Development of an NFR tool that based on detected power and energy
consumption NFR violations determines an ELASTIC redeployment of tasks.

Review Completed

Retrospective -

Energy and time non-functional requirements - Sprint 6

Duration February 1-29, 2020

Goal Integration of NFR tool with COMPs

Planning
Integration of NFR tool with the COMPs orchestrator. Decisions computed
by the NFR tool are made available in dataClay service, to the application
orchestrator (COMPs).

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

13

3.1.5 Communication and security non-functional requirements – NFR tool

Communication and security non-functional requirements– Sprint 1

Duration June 1-30, 2019

Goal Requirements analysis

Planning Definition of tasks based on the agreed requirements and research on the
tools to be used.

Review Completed

Retrospective -

Communication and security non-functional requirements – Sprint 2

Duration July 1-31, 2019

Goal Testing of different available tools

Planning Perform tests on different hardware in order to check the optimal
performance of the solutions.

Review Completed

Retrospective -

Communication and security non-functional requirements – Sprint 3

Duration September 1-30, 2019

Goal Choice and validation of the analyzed tools

Planning Decision of the best solution based on proofs of concept in the proposed
hardware.

Review Completed

Retrospective -

Communication and security non-functional requirements – Sprint 4

Duration October 1-31, 2019

Goal Containerization of OpenSCAP (open source Security Content Automation
Protocol)

Planning Adapt the available OpenSCAP container images to the specific
requirements of the project.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

14

Communication and security non-functional requirements – Sprint 5

Duration November 1-30, 2019

Goal Validation of OpenSCAP in the Jetson TX2

Planning Use of the OpenSCAP tool and consider different software environments.

Review Completed

Retrospective -

Communication and security non-functional requirements – Sprint 6

Duration December 1-31, 2019

Goal Implementation of cost algorithm for NFR monitor

Planning Study and proposition of a cost algorithm, quantifying the performance
parameters restricting the communications.

Review Completed

Retrospective -

Communication and security non-functional requirements – Sprint 7

Duration January 1 2020 (ongoing)

Goal Validation of security tools with dataClay

Planning Verification of the functionality of dataClay with regard to the security
analysis performed by OpenSCAP.

Review In progress

Retrospective -

Communication and security non-functional requirements – Sprint 8

Duration February 1-29, 2020

Goal Documentation

Planning Completion of the deliverable documents with the outcome of the
previous tasks.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

15

3.1.6 Communication middleware – Fog computing architecture

Communication middleware – Sprint 1

Duration June 1-30, 2019

Goal Requirements analysis

Planning Definition of tasks based on the agreed requirements and research on the
tools to be used.

Review Completed

Retrospective -

Communication middleware – Sprint 2

Duration July 1-31, 2019

Goal Information classification considering the use case scenarios

Planning From the use case scenarios, define the data that will be transmitted and
the destination of the data flow.

Review Completed

Retrospective -

Communication middleware – Sprint 3

Duration September 1-30, 2019

Goal Definition of data streams

Planning Classification of the different data streams that will be received and
grouping as a function of their requirements.

Review Completed

Retrospective -

Communication middleware – Sprint 4

Duration October 1-31, 2019

Goal Assignation of network interfaces for communication

Planning Development of a decision table considering a network interface for each
data stream.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

16

Communication middleware – Sprint 5

Duration November 1-30, 2019

Goal Definition of communications middleware

Planning Proposition of the communications middleware architecture and
differentiation between the different phases of the project.

Review Completed

Retrospective -

Communication middleware – Sprint 6

Duration December 1-31, 2019

Goal Design of interoperable data model

Planning Design of the initial data model to be used by the edge/fog node for the
communication between nodes.

Review Completed

Retrospective -

Communication middleware – Sprint 7

Duration January 1-31, 2020

Goal Implementation of the interoperable data model

Planning Implementation of the basic data msgType of the initial data model in
KonnektBox.

Review Completed

Retrospective -

Communication middleware – Sprint 8

Duration February 1-28, 2020

Goal Documentation

Planning Completion of the deliverable documents with the outcome of the
previous tasks.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

17

3.1.7 KonnektBox – Fog computing architecture

KonnektBox – Sprint 1

Duration June 1-30, 2019

Goal Requirements analysis

Planning Definition of tasks based on the agreed requirements and research on the
tools to be used.

Review Completed

Retrospective -

KonnektBox – Sprint 2

Duration July 1-31, 2019

Goal KonnektBox integration with Nvidia Jetson TX2

Planning Installation and configuration of a KonnektBox in an Nvidia Jetson TX2
evaluation board.

Review Completed

Retrospective -

KonnektBox – Sprint 3

Duration September 1-30, 2019

Goal 4G modem support

Planning Add support for LTE/4G modems in KonnektBox (control and monitoring of
the connection).

Review Completed

Retrospective -

KonnektBox – Sprint 4

Duration October 1-31, 2019

Goal KonnektBox data pipelines

Planning
Add service to deploy custom data pipelines inside a KonnektBox (with
custom functions to perform data transformation and custom export
clients)

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

18

KonnektBox – Sprint 5

Duration November 1-30, 2019

Goal KonnektBox-Nuvla integration

Planning Integration of KonnektBox in Sixsq Nuvla.io platform to remotely deploy
services and monitor KonnektBox.

Review Completed

Retrospective -

KonnektBox – Sprint 6

Duration December 1-31, 2019

Goal Design of interoperable data model

Planning Design of the initial data model to be used by the edge/fog node for the
communication between nodes.

Review Completed

Retrospective -

KonnektBox – Sprint 7

Duration January 1-31, 2020

Goal Integration of dataClay component

Planning Development of dataClay client REST API and integration of dataClay REST
component inside KonnektBox data pipeline.

Review Completed

Retrospective -

KonnektBox – Sprint 8

Duration February 1-29, 2020

Goal Documentation

Planning Completion of the deliverable documents with the outcome of the
previous tasks.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

19

3.1.8 Nuvla/NuvlaBox – Fog computing architecture

Nuvla/NuvlaBox – Sprint 1

Duration June 1-30, 2019

Goal Ability to register an existing container infrastructure into Nuvla

Planning Develop the data models, API workflows and GUI to allow users to register
new CaaS infrastructure in Nuvla

Review Completed

Retrospective -

Nuvla/NuvlaBox – Sprint 2

Duration July 1-31, 2019

Goal Create and release the first container-based version of the NuvlaBox

Planning Develop set of microservices that are capable of turning any Docker-
compatible device into an edge device that can be managed from Nuvla

Review Completed

Retrospective -

Nuvla/NuvlaBox – Sprint 3

Duration September 1-30, 2019

Goal Deploy the NuvlaBox into an NVidia Jetson TX2

Planning Check that the NuvlaBox can be deployed into the Use Cases devices
(Jetson TX2) and make use of GPUs via Docker.

Review Completed

Retrospective -

Nuvla/NuvlaBox – Sprint 4

Duration October 1-31, 2019

Goal Deploy the NuvlaBox into an NVidia Jetson TX2

Planning Check that the NuvlaBox can be deployed into the use cases devices
(Jetson TX2) and make use of GPUs via Docker.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

20

Nuvla/NuvlaBox – Sprint 5

Duration November 1-30, 2019

Goal Add Nuvla support for Kubernetes infrastructures

Planning Apart from Docker CaaS infrastructures, let users also register Kubernetes
CaaS and deploy Kubernetes apps.

Review Completed

Retrospective -

Nuvla/NuvlaBox – Sprint 6

Duration December 1, 2019 – February 29, 2020

Goal Add Data Gateway to NuvlaBox

Planning Implement a data routing mechanism to allow automatic ingestion and
digestion of raw sensor data, via MQTT.

Review Completed

Retrospective -

Nuvla/NuvlaBox – Sprint 7

Duration January 15-31, 2020

Goal Deploy dataClay into a NuvlaBox, from Nuvla

Planning Take the dataClay compose file, register it as a new Nuvla application and
deploy it to a NuvlaBox. Check successful installation of dataClay.

Review Completed

Retrospective Had to convert the DataClay compose file to be Docker Swarm compatible

Nuvla/NuvlaBox – Sprint 8

Duration January 1 2020 (ongoing)

Goal Provide Nuvla GUI for managing NuvlaBox Data Gateway

Planning Implement the API calls to NuvlaBox such that users can turn on/off the
data routing, and also define the data models.

Review In progress

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

21

Nuvla/NuvlaBox – Sprint 9

Duration February 1, 2020 (ongoing)

Goal Allow application deployments with private Docker registries

Planning Develop authentication models and workflow for user applications that
need to pull Docker images from private registries.

Review In progress

Retrospective -

Nuvla/NuvlaBox – Sprint 10

Duration February 1, 2020 (ongoing)

Goal Collect all fog metrics necessary for the NFR tool

Planning Extend the existing fog manager/telemetry inside the NuvlaBox to also
publish the metrics needed by the NFR tool.

Review In progress

Retrospective -

11

Nuvla/NuvlaBox – Sprint 11

Duration February 1-29, 2020

Goal Documentation

Planning Completion of the deliverable documents with the outcome of the
previous tasks.

Review Completed

Retrospective -

3.1.9 Software architecture validation for the use cases

Software architecture validation - Sprint 1

Duration October 1 – November 30, 2019

Goal Platform

Planning Multi-platform delivery environment: Linux OS, toolchain, deployment,
tooling of software

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

22

Software architecture validation - Sprint 2

Duration December 1 - January 31, 2019

Goal Software architecture review

Planning Software architecture review for optimization and software preparation
for future enhancements

Review Completed

Retrospective -

3.1.10 Use case related sprints
Scrum-based methodology has also been adopted to develop the software and
hardware components of the Next Generation Autonomous Positioning (NGAP) and
the Advanced Driving Assistant System (ADAS) use cases by THALIT.

3.1.10.1 ADAS Use case

ADAS use case – Sprint 1

Duration March 1-31, 2019

Goal Sensor: camera selection

Planning Key features definition, selection, starting purchasing activities.

Review Completed

Retrospective -

ADAS use case – Sprint 2

Duration April 1-30, 2019

Goal Sensor: camera testing / Software tool for measurement analysis

Planning Lab testing of camera. Software tool for sensor data analysis.

Review Completed

Retrospective -

ADAS use case – Sprint 3

Duration May 1-31, 2019

Goal Documentation

Planning Documents finalization. Data fusion study and architecture definition.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

23

ADAS use case – Sprint 4

Duration June 1-30, 2019

Goal Radar characterization

Planning Radar testing. Cluster vs objects outputs analysis.

Review Completed

Retrospective -

ADAS use case – Sprint 5

Duration July 1-31, 2019

Goal Camera characterization

Planning Camera study, lab testing, homography mathematics.

Review Completed

Retrospective -

ADAS use case – Sprint 6

Duration August 1-31, 2019

Goal Sensor acquisition

Planning More radar acquisition. Lidar definition and key features definition.

Review Completed

Retrospective -

ADAS use case – Sprint 7

Duration September 1-30, 2019

Goal Software tool upgrade

Planning Improvement of measurements analysis tool.

Review Completed

Retrospective -

ADAS use case – Sprint 8

Duration October 1-31, 2019

Goal Installation and testing

Planning Radar installation on tram vehicle 1013. GEST/Hitachi meetings and
technical agreements for equipment installation.

Review Completed /In progress

Retrospective Radar installed. Hitachi agreement still pending, expected to be finalized
in March 2020.

D3.2 Refined requirements and integration plan
Version 1.0

24

ADAS use case – Sprint 9

Duration November 1-30, 2019

Goal LIDAR characterization

Planning Lidar lab tests and analysis. Design of bracket system to install sensor on
tram vehicles

Review Completed

Retrospective -

ADAS use case – Sprint 10

Duration December 1-31, 2019

Goal Data fusion algorithm and installation on vehicle

Planning Initial data fusion study and analysis. Installation on UNIMOG (special
vehicle).

Review Completed

Retrospective -

ADAS use case – Sprint 11

Duration January 1-31, 2020

Goal Data fusion. UNIMOG

Planning Data fusion study and analysis, architecture finalization. Field test with
UNIMOG. Project deliverable finalization.

Review Completed

Retrospective -

ADAS use case – Sprint 12

Duration February 1, 2020 (ongoing)

Goal Dataset acquisition software

Planning Software upgrade for dataset acquisition and sensor driver upgrade. Field
test with vehicle 1013.

Review In progress

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

25

3.1.10.2 NGAP use case

NGAP use case - Sprint 1

Duration March 1-31, 2019

Goal Real Time Kinematic (RTK) technique

Planning RTK study. Provider definition and agreement. Tool for measurement
analysis design.

Review Completed

Retrospective -

NGAP use case - Sprint 2

Duration April 1-30, 2019

Goal RTK, data fusion

Planning RTK finalization and implementation of tool for measurement analysis.
Sensor fusion study and analysis. Rail track modelling.

Review Completed

Retrospective -

NGAP use case - Sprint 3

Duration May 1-31, 2019

Goal Splines and project deliverables

Planning Tool for measurement analysis testing. Sensor fusion architecture. Rail
track modelling with splines.

Review Completed

Retrospective -

NGAP use case - Sprint 4

Duration June 1-30, 2019

Goal Loop data

Planning Along line loop data retrieval system definition for hardware and
software.

Review Completed

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

26

NGAP use case - Sprint 5

Duration July 1-31, 2019

Goal RADAR installation

Planning RADAR installation on 1013, testing and measurement analysis. Tuning

Review Completed

Retrospective -

NGAP use case - Sprint 6

Duration August 1-31, 2019

Goal Test and software tuning

Planning Field testing and measurements analysis. Tuning of software application.

Review Completed (testing is always ongoing because sensors continuously collect
data and they are retrieved by LTE channel).

Retrospective -

NGAP use case - Sprint 7

Duration September 1 - October 31, 2019

Goal NGAP software tool

Planning Upgrade and tuning of measurement tool.

Review Completed

Retrospective -

NGAP use case - Sprint 8

Duration November 1 – December 31, 2019

Goal Sensor fusion implementation upgrade

Planning Sensor fusion algorithm implementation upgrade and output verification

Review In progress

Retrospective -

D3.2 Refined requirements and integration plan
Version 1.0

27

NGAP use case - Sprint 9

Duration January 1, 2020 (ongoing)

Goal RTK installation

Planning NGAP performance estimation in comparison with ground truth system
(RTK)

Review In progress

Retrospective Verification of output will go on till sensors are installed and data
collected

NGAP use case - Sprint 10

Duration February 1, 2020 (ongoing)

Goal Test field

Planning Sensor fusion integration, testing and tuning

Review In progress

Retrospective Testing will go on

3.2 Version control systems
Version control systems provide means for distributed teams to work collaboratively
together on shared documents. In this regard, the ELASTIC project started using two
different platforms: Apache Subversion (SVN) [4] and Git [5]. The SVN repository was
created at the beginning of the project, February 2019, in order to share
documentation (meeting minutes, papers, presentations, etc.), and it is still used
for the same purpose.

All partners stated the need to use a more complete platform for software
development, i.e., Git, because it joins several DevOps functionalities (e.g., version
control, issue tracking, distribution, etc.). BSC has set up a GitLab [6] instance
hosted in the BSC premises. In detail, a virtual machine was setup, with public access
(https://bsccselastic01.bsc.es) and login-protected. The machine has 4 virtual
cores, 4GB RAM plus 4GB SWAP, a 60GB hard drive and Ubuntu 16.04 as the OS.
Currently, the GitLab instance installed in this machine, as shown in Figure 1,
contains three groups with different projects:

• Documents: for work-in-progress deliverables;
• ELASTIC-SA: for the development of the different software components of the

ELASTIC Software Architecture;
• Examples: for examples of applications and demos of the different software

components.

D3.2 Refined requirements and integration plan
Version 1.0

28

Figure 1. Screenshot of the ELASTIC GitLab groups

3.3 Continuous Integration (CI) system
A Jenkins [7] server has been installed in the BSC machine hosting the GitLab
instance, in order to test both some isolated components (e.g., COMPSs, NFR tool),
as well as the integration among them. The Jenkins interface is shown in Figure 2.

Even though no tests have been included so far, the Jenkins platform will be used
during the third phase of the project, along with any other CI tools (e.g., GitLab CI)
already used by each of the ELASTIC partners.

Figure 2. Screenshot of the ELASTIC Jenkins server.

D3.2 Refined requirements and integration plan
Version 1.0

29

3.4 Instant messaging and transparency
The distributed nature of the ELASTIC team enforces a mechanism to ensure agile
communications and transparency. In this regard, BSC has set up a Slack [8]
workspace on October 2019 to integrate team communications in one place. Slack
offers, among others, the possibility of creating channels of communication,
organized by topics, or to send direct messages, as shown in Figure 3.

Figure 3. Screenshot of the ELASTIC Slack workspace.

During phase 2, the ELASTIC partners have used Slack to share code snippets,
documents and messages. Some usage statistics towards the end of phase 2 are
shown as an example in Figure 4.

D3.2 Refined requirements and integration plan
Version 1.0

30

Figure 4. Usage analytics for the ELASTIC Slack workspace during the end of phase 2

3.5 Pending issues
Some pending issues still remain regarding the integration plan, and are described
below:

• Testing with CI system: Even though some steps have been already made
towards CI testing, the ELASTIC consortium is still in the process of properly
automating the testing process for the evaluation of the current
implementation. It is expected that during phase 3, the partners involved in
the integration of the ELASTIC software architecture will implement unit tests
on the Jenkins platform (or in any other CI system that may be more suitable
to the partners’ workflows).

• Bug and issue tracking: So far, the partners have used their own internal
systems to track issues. However, during the third phase of ELASTIC, it is
planned to include all bug and issue tracking information in the project’s
GitLab, thus centralizing the development of the code and facilitating the
collaboration between partners.

D3.2 Refined requirements and integration plan
Version 1.0

31

4. Acronyms and Abbreviations

Each term should be bulleted with a definition.

Below is an initial list that should be adapted to the given deliverable.

• ADAS - Advanced Driving Assistant System
• API – Application Program Interface
• CaaS – Container as a Service
• CI – Continuous Integration
• D – deliverable
• DDAP – Distributed Data Analytics Platform
• GPU – Graphics Processing Unit
• GUI – Graphical User Interface
• LIDAR – Light Detection and Ranging
• M – Month
• MQTT – MQ Telemetry Transport
• MS – Milestones
• NFR – Non-Functional Requirements
• NGAP - Next Generation Autonomous Positioning
• RTK – Real Time Kinematics
• SCAP – Security Content Automation Protocol
• SRIA - Strategic Research and Innovation Agenda (SRIA)
• SVN - Apache Subversion
• WP – Work Package

5. References

[1] ELASTIC, "D3.1 Software architecture requirements and integration plan," May
2019.

[2] ELASTIC, "D3.3 ELASTIC software architecture – First release," February 2020.

[3] K. Schwaber and M. Beedle, Agile Software Development with Scrum, NJ, United
States: Prentice Hall PTR, Upper Saddle River, ISBN: 978-0-13-067634-4, 2001.

[4] "Apache Subversion "Enterprise-class centralized version control for the
masses"," [Online]. Available: https://subversion.apache.org/.

[5] git. [Online]. Available: https://git-scm.com/.

[6] "Gitlab. The entire DevOps lifecycle in one application.," [Online]. Available:
https://about.gitlab.com/.

[7] "Jenkins," 2018. [Online]. Available: https://jenkins.io.

[8] "Slack, «Where work happens»," 2019. [Online]. Available: www.slack.com.

	Change Log
	1. Executive Summary
	2. Requirements of the ELASTIC Software Architecture
	3. Development and integration plan
	3.1 Scrum-based methodology
	3.1.1 Distributed data analytics platform
	3.1.2 COMPSs orchestrator
	3.1.3 dataClay – Distributed Storage
	3.1.4 Energy and time non-functional requirements – NFR tool
	3.1.5 Communication and security non-functional requirements – NFR tool
	3.1.6 Communication middleware – Fog computing architecture
	3.1.7 KonnektBox – Fog computing architecture
	3.1.8 Nuvla/NuvlaBox – Fog computing architecture
	3.1.9 Software architecture validation for the use cases
	3.1.10 Use case related sprints
	3.1.10.1 ADAS Use case
	3.1.10.2 NGAP use case

	3.2 Version control systems
	3.3 Continuous Integration (CI) system
	3.4 Instant messaging and transparency
	3.5 Pending issues

	4. Acronyms and Abbreviations
	5. References

