LL“JI'U

A Software Architecture for Extreme-Scale
Big-Data AnalyticS in Fog CompuTIng Ecosystems

D3.2 Refined requirements and
integration plan
Version 1.0

Document Information

Contract Number 825473

Project Website https: //elastic-project.eu/
Contractual Deadline M15, February 2020

Dissemination Level PU

Nature R

Author(s) Maria A. Serrano, Elli Kartsakli (BSC)

Cristina Zubia, Marco Gonzalez, Alvaro Gonzalez,
Xabier Pérez (IKL); Luis Miguel Pinho, Luis Nogueira

R, (ISEP); Cristovao Cordeiro (SIX); César Marin (ICE);
Marco Merlini (THALIT); Anna Queralt (BSC)
Reviewer(s) Cristovao Cordeiro (SIX)
software development ecosystem, software
Keywords

architecture, integration plan

Notices: The ELASTIC project has received funding from the European
Union’s Horizon 2020 research and innovation programme under the
grant agreement N° 825473.

© 2019 ELASTIC. A Software Architecture for Extreme-ScalLe Big-Data AnalyticS in Fog
CompuTing ECosystems. All rights reserved.

D3.2 Refined requirements and integration plan

Version 1.0 LN d 11v

Change Log

Version | Author Description of Change

vo.q Maria A serrano | .ol praft

(BSC)
Elli Kartsakli
V0.2 (B5) Revised version, missing the integration sprints
V0.3 Elli Kartsakli Included integration sprints, missing two
’ (BSC) contributions
Cristovao Cordeiro,
V0.4 (51%) Revised version, missing one contribution
V1.0 BSC Final Version. Ready to be submitted.

D3.2 Refined requirements and integration plan

Version 1.0 LN d 1 1VY

Table of contents

L = T oL o PP 2
1. EXECULIVE SUMIMAIY . eettiiiiiiiii i it eeeeeineeeeeeaeannnneeeeeseeannnnes 4
2. Requirements of the ELASTIC Software Architectureccviiiiiinet. 5
3. Development and integration plan......ccoviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeaenns 5
3.1 Scrum-based methodologycvvviiiiiiiiiiiiiiiiiiiiiiiieeeereeeeeeeeeeeeaennns 5
3.1.1 Distributed data analytics platform......ccooviiiiiiiiiiiiiiiiiiiinnnn... 6
3.1.2 COMPSS Orchestratoreieiiiiiiiiiiiiiiiiiiii i eiiiiiiieeeeeaaanes 7
3.1.3 dataClay - Distributed Storage......cccevviiiiiieiriieirrereereeeeeeeenennees 9
3.1.4 Energy and time non-functional requirements - NFR tool 11
3.1.5 Communication and security non-functional requirements - NFR tool13
3.1.6 Communication middleware - Fog computing architecture 15
3.1.7 KonnektBox - Fog computing architecturecccccoevvvvviennnnn.. 17
3.1.8 Nuvla/NuvlaBox - Fog computing architecture..............ccceene... 19
3.1.9 Software architecture validation for the use cases..................... 21
3.1.10 Use case related sprintscoeieeiiiieiiiiiiiiiiieereeieinieeeeeeennnns 22

3.2 Version control SYSteMS «.uvinieeitieiiiiiiieeeeeiiieeeeeeeennnneeeeeanns 27
3.3 Continuous Integration (Cl) systemccviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeens 28
3.4 Instant messaging and tranSPareNCy.....covvueeeeereeeninneeeeeeeeennnnneeeenns 29
3.5 Pending iSSUBS .uuunnueetettieeiiiieetteeeeinineeeeeeeeeannneeeeeeesennnnneeeeens 30
4. Acronyms and Abbreviationseeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeenes 31
LT 20 = =1 o = 31

D3.2 Refined requirements and integration plan

Version 1.0 LN d 1 1VY

1. Executive Summary

This deliverable covers part of the work done during the second phase of the project
(M7-M15) within WP3, mainly regarding Task 3.1 "Software architecture requirements
specification”, to reach milestone MS2.

Specifically, this deliverable provides a description of the work carried out within
the frame of the integration plan during the second phase of the project. The
deliverable will also provide a short summary of the software architecture
requirements, since no modifications have been made with respect to their initial
definition in D3.1 [1].

The second milestone of Task 3.1 has been carried out successfully and all objectives
of MS2 have been reached and documented in this deliverable.

D3.2 Refined requirements and integration plan

Version 1.0 LN d 1 1VY

2. Requirements of the ELASTIC Software Architecture

The technical requirements of the ELASTIC Software Architecture have been
extensively defined in Deliverable D3.1 [1]. In particular, after taking into
consideration the main challenges for Big Data stakeholder ecosystems defined
within the Strategic Research and Innovation Agenda (SRIA), a set of six business
goals and four technical requirements has been identified and described in D3.1, and
summarized for convenience in Table 1.

D3.1 provided a first description of the ELASTIC Software Development ecosystem
and its software components to accomplish the aforementioned technical
requirements and business goals. A redefined version of this ecosystem, still fulfilling
the same set of requirements, is provided in Deliverable D3.3 “ELASTIC software
architecture - First release” [2], where all modifications to the software components
and interfaces with respect to the initial planning of D3.1 are fully described.

Table 1. Business goals and technical requirements of the ELASTIC Software Architecture

Business goals Technical requirements

BG1. Interoperability
BG2. Easy-to-use REQ-SWARCH-TR1. Increase Software Productivity

BG3. Scalability and Performance

REQ-SWARCH-TR2. Fulfilment of Non-Functional
Requirements

BG5. IT Infrastructure Cost Reduction | REQ-SWARCH-TR3. Enable Flexibility and Elasticity

REQ-SWARCH-TRA4. Privacy and Security
Mechanisms to Guarantee the Legal Framework
REQ-SWARCH-TR2. Fulfilment of Non-Functional
Requirements

BG4. Real-time Requirements

BG6. Privacy and Security

3. Development and integration plan

D3.1 [1] introduced the development and integration plan defined for the ELASTIC
project. In this regard, this section describes the work done since milestone MS1 to
reach MS2, including both methodologies and tools.

3.1 Scrum-based methodology

The distributed nature of the several teams involved in the ELASTIC project led us
to define a Scrum-based methodology [3] for the development of the project in D3.1.
This strategy allowed us to define common goals together with a series of tasks to
identify and execute the work to be done. The following subsections describe the
sprints considered by each partner in the phase 2 of the project (months 7 to 16).
Each team has worked in semi-isolation to develop the functionalities of the different
components, based on the requirements and APIs defined during Phase 1. For that
reason, the sprints are defined separately for the development of different
technological components of the software architecture. Furthermore, sprints for the
ADAS/NGAP use case are also presented, since scrum-based methodology has been
also adopted for the preparation of the software and hardware platform of this
specific use case.

rrm
F—

==
co

D3.2 Refined requirements and integration plan
Version 1.0

(g

3.1.1 Distributed data analytics platform

Distributed data analytics platform - Sprint 1

Duration June 1 - September 30, 2019
Definition of solution for distributed analytics
Define an architecture for analytics tools based on Spark.

Review Completed

(GG Heal=N Architecture slightly out of the scope. Redesign

Distributed data analytics platform - Sprint 2
Duration October 1 - November 30, 2019
Redefinition of solution for a distributed data analytics platform (DDAP)

Define an architecture for a platform for distributed analytics. Solution to
be supported by Spark and Druid.

Review Completed

G178 dataClay still has to be considered as part of the architecture

Distributed data analytics platform - Sprint 3

Duration December 1-31, 2019
First try at ingesting data using DDAP

First attempt at deploying Druid and ingesting some data available from
the transport infrastructure.

Review Completed

(G Sl d)7=0 dataClay still have to be considered as part of the architecture

Distributed data analytics platform - Sprint 4

Duration January 1-31, 2020
Redesign of DDAP to include dataClay

Update architecture picture to include dataClay as part of DDAP, including
deployment at transport infrastructure.

Review Completed

Retrospective |8

re
F—
==

D3.2 Refined requirements and integration plan
Version 1.0

D
-

|<

Distributed data analytics platform - Sprint 5
Duration February 1, 2020 (ongoing)
Attempt to deploy DDAP at ICE and make it available to partners

Deployment of DDAP components, mainly Druid and Spark. Ingest data
from transport infrastructure on a more regular basis.

Review In progress

G eS8 dataClay still not deployed

3.1.2 COMPSs orchestrator

COMPSs orchestrator - Sprint 1
Duration June 1-30, 2019
Design heuristics algorithms
Identify and adapt several heuristics to the scheduling process in COMPSs.

Review Completed

Retrospective &

COMPSs orchestrator - Sprint 2

Duration July 1-31, 2019
Implement adaptive feature for the COMPSs scheduler

Implement the designed algorithms, considering both online and offline
timing analysis, to be integrated as an eligible COMPSs scheduler strategy.

Review Completed

Retrospective &

COMPSs orchestrator - Sprint 3

Duration August 1-31, 2019
Design the containerized deployment of a COMPSs workflow

Research on container technologies and approaches for containerized
deployments and on how to adapt COMPSs to containerized deployment.

Review Completed

Retrospective |8

cD

D3.2 Refined requirements and integration plan

Version 1.0 LN d 11V

COMPSs orchestrator - Sprint 4

Duration September 1-30, 2019

Design of the integration between the NFR tool and COMPSs by using
dataClay

Develop the data model needed to communicate COMPSs and the NFR
monitoring tool, to enable the monitoring of the available resources.

Review Completed, a data model has been agreed among the involved partners

Retrospective B8

o
=,

COMPSs orchestrator - Sprint 5

Duration October 1 - November 30, 2019
Goal Migrate containerized deployment of COMPSs to a generic cloud scenario

Research on the most popular cloud platform and environments and how
they work. Design an integration with COMPSs.

Review Completed

Retrospective B8

COMPSs orchestrator - Sprint 6

Duration December 1-31, 2019
Goal Implement the initial NFR tool integration with COMPSs

Implement the interaction between COMPSs and the NFR tool in order to
update the list of available resources able to execute COMPSs tasks.

Review Complete

(G eS8 This is the initial integration for MS2.

COMPSs orchestrator - Sprint 7

Duration February 1-29, 2020

Goal Prepare documentation

Completion of the deliverables with the outcome of the previous tasks.
Review Completed

Retrospective B

D3.2 Refined requirements and integration plan

Version 1.0 LN d 11V

3.1.3 dataClay — Distributed Storage

dataClay - Sprint 1
Duration June 1-30, 2019
Goal Allow federated devices to leave the infrastructure

Provide an un-federation mechanism so that data can be kept if needed,
but not synchronized with devices that left.

Completed

Un-federation method as well as auxiliary methods to facilitate re-
(G ea)=l federation with other devices provided. Extensive testing of various
foreseen situations with moving devices.

dataClay - Sprint 2

Duration July 1-31, 2019

Goal Run dataClay on Jetson boards

Reduce footprint and improve performance of dataClay.
Review Completed

Extensive testing of a dataClay instance in isolation and federated with

Retrospective [pnERoingsm

dataClay - Sprint 3

Duration August 1-31, 2019
Goal Improve deployment with Docker

Simplify Docker compose, minimize ports exposed, add health-check,
move configuration variables from file to Docker compose.

Review Completed

Retrospective |8

dataClay - Sprint 4

Duration September 1-30, 2019
Goal Dockerize dataClay management functionalities

Containerize the dataClay command-line utility for model and user
management so that Java or Python don’t need to be installed in the
client machine.

Review Completed

Retrospective B

D3.2 Refined requirements and integration plan

Version 1.0 LLAYgIv

dataClay - Sprint 5

Duration September 1 - October 31, 2019
Goal Facilitate synchronization to the developer

Provide a pre-defined synchronization mechanism that can be
incorporated to the necessary classes in the model, by importing a class
(Java) or inheriting from a mixin (Python) already implementing the
behavior.

Review Completed

Retrospective B

dataClay - Sprint 6

Duration October 1 - November 30, 2019
Goal Provide an integrated deployment of COMPSs and dataClay

Facilitate deployment of COMPSs and dataClay using dockers, and develop
examples of applications using both tools simultaneously so that other
partners can easily use them in combination.

Review Completed

Retrospective B

dataClay - Sprint 7

Duration December 1-31, 2019

Goal Publish dataClay in Maven central repository
Facilitate the use of dataClay from Java applications.
Review Completed

Retrospective |8

dataClay - Sprint 8

Duration December 1, 2019 - January 31, 2020
Goal Design integration with the DDAP

Design how the different tools involved (COMPSs, Spark, Druid and
dataClay) can be integrated to provide the appropriate Distributed Data
Analytics functionalities required by the use cases.

Review Completed

G [le)=l Done in collaboration with ICE

10

D3.2 Refined requirements and integration plan

Version 1.0 LN d 11V

dataClay - Sprint 9

Duration January 1 - February 29, 2020
Goal Improve performance of storing new objects and not limit their size

Optimize the workflow by reducing interactions between dataClay
components, removing unnecessary functionality, and using more efficient
data structures. Enable storage of objects as big as allowed by the
memory of the machine.

Review Completed

Retrospective B

dataClay - Sprint 10

Duration February 1-29, 2020

Implement a dataClay model for the integration of the NFR tool and

Goal COMPSs

Initial version of the model agreed by the involved components so that
they can share the control data required to perform their functions.
Sample NFR-inspired application provided as a guide.

Review Completed

Retrospective |8

3.1.4 Energy and time non-functional requirements — NFR tool

Energy and time non-functional requirements - Sprint 1

Duration June 1-30, 2019
Goal Timing and CPU load tool analysis

Research on the generally available Linux tools to determine execution
times (per process) and CPU load (per process and per node).

Review Completed

Retrospective |8

Energy and time non-functional requirements - Sprint 2

Duration July 1-31, 2019
Goal Development of execution time and CPU load probes

Using selected Linux tools from previous analysis, develop software probes
that report the execution times of processes and CPU load (per process
and per node).

Review Completed

Retrospective B

11

D3.2 Refined requirements and integration plan

Version 1.0 LN d 11V

Energy and time non-functional requirements - Sprint 3

Duration September 1 - October 31, 2019
Goal Power and energy consumption tool analysis

Research on the generally available Linux tools and techniques to
determine/infer power and energy consumption (per process and/or per
node) and temperature (per core and per node).

Review Completed

Retrospective B8

Energy and time non-functional requirements - Sprint 4

Duration November 1-30, 2019
Goal Development of power and energy consumption probes

Using selected Linux tools from previous analysis, develop software probes
that report the power and energy consumption (per process and/or per
node).

Review Completed

Retrospective |8

Energy and time non-functional requirements - Sprint 5

Duration December 1, 2019 - January 31, 2020
Goal Integration of probes with NFR tool

Development of an NFR tool that based on detected execution time and
CPU load NFR violations determines an ELASTIC redeployment of tasks.
Development of an NFR tool that based on detected power and energy
consumption NFR violations determines an ELASTIC redeployment of tasks.

Review Completed

Retrospective B

Energy and time non-functional requirements - Sprint 6

Duration February 1-29, 2020
Goal Integration of NFR tool with COMPs

Integration of NFR tool with the COMPs orchestrator. Decisions computed
by the NFR tool are made available in dataClay service, to the application
orchestrator (COMPs).

Review Completed

Retrospective B

12

D3.2 Refined requirements and integration plan C
Version 1.0 L

3.1.5 Communication and security non-functional requirements — NFR tool

Communication and security non-functional requirements- Sprint 1

Duration June 1-30, 2019
Goal Requirements analysis

Definition of tasks based on the agreed requirements and research on the
tools to be used.

Review Completed

Retrospective B

Communication and security non-functional requirements - Sprint 2

Duration July 1-31, 2019
Goal Testing of different available tools

Perform tests on different hardware in order to check the optimal
performance of the solutions.

Review Completed

Retrospective B

Communication and security non-functional requirements - Sprint 3

Duration September 1-30, 2019
Goal Choice and validation of the analyzed tools

Decision of the best solution based on proofs of concept in the proposed
hardware.

Review Completed

Retrospective |8

Communication and security non-functional requirements - Sprint 4

Duration October 1-31, 2019

Containerization of OpenSCAP (open source Security Content Automation

ozl Protocol)

Adapt the available OpenSCAP container images to the specific
requirements of the project.

Review Completed

Retrospective B

13

D3.2 Refined requirements and integration plan C
Version 1.0 L

Communication and security non-functional requirements - Sprint 5

Duration November 1-30, 2019

Validation of OpenSCAP in the Jetson TX2

Use of the OpenSCAP tool and consider different software environments.
Review Completed

Retrospective B

Communication and security non-functional requirements - Sprint 6

Duration December 1-31, 2019
Implementation of cost algorithm for NFR monitor

Study and proposition of a cost algorithm, quantifying the performance
parameters restricting the communications.

Review Completed

Retrospective |8

Communication and security non-functional requirements - Sprint 7

Duration January 1 2020 (ongoing)
Validation of security tools with dataClay

Verification of the functionality of dataClay with regard to the security
analysis performed by OpenSCAP.

Review In progress

Retrospective B

Communication and security non-functional requirements - Sprint 8

Duration February 1-29, 2020
Documentation

Completion of the deliverable documents with the outcome of the
previous tasks.

Review Completed

14

rrm
r—

D3.2 Refined requirements and integration plan
Version 1.0

—
(g
cD

3.1.6 Communication middleware — Fog computing architecture

Communication middleware - Sprint 1

Duration June 1-30, 2019
Requirements analysis

Definition of tasks based on the agreed requirements and research on the
tools to be used.

Review Completed

Retrospective |8

Communication middleware - Sprint 2

Duration July 1-31, 2019
Information classification considering the use case scenarios

From the use case scenarios, define the data that will be transmitted and
the destination of the data flow.

Review Completed

Retrospective |8

Communication middleware - Sprint 3

Duration September 1-30, 2019
Definition of data streams

Classification of the different data streams that will be received and
grouping as a function of their requirements.

Review Completed

Retrospective |8

Communication middleware - Sprint 4

Duration October 1-31, 2019
Assignation of network interfaces for communication

Development of a decision table considering a network interface for each
data stream.

Review Completed

Retrospective |8

D3.2 Refined requirements and integration plan
Version 1.0

rM
r—
3=
-

co

(g

|<

Communication middleware - Sprint 5
Duration November 1-30, 2019
Definition of communications middleware

Proposition of the communications middleware architecture and
differentiation between the different phases of the project.

Review Completed

Retrospective |8

Communication middleware - Sprint 6

Duration December 1-31, 2019
Design of interoperable data model

Design of the initial data model to be used by the edge/fog node for the
communication between nodes.

Review Completed

Retrospective |8

Communication middleware - Sprint 7

Duration January 1-31, 2020
Implementation of the interoperable data model

Implementation of the basic data msgType of the initial data model in
KonnektBox.

Review Completed

Retrospective |8

Communication middleware - Sprint 8

Duration February 1-28, 2020
Documentation

Completion of the deliverable documents with the outcome of the
previous tasks.

Review Completed

Retrospective |8

D3.2 Refined requirements and integration plan
Version 1.0

rrm
r—

(g

==
cD

3.1.7 KonnektBox — Fog computing architecture

KonnektBox - Sprint 1

Duration June 1-30, 2019
Requirements analysis

Definition of tasks based on the agreed requirements and research on the
tools to be used.

Review Completed

Retrospective B

KonnektBox - Sprint 2

Duration July 1-31, 2019
KonnektBox integration with Nvidia Jetson TX2

Installation and configuration of a KonnektBox in an Nvidia Jetson TX2
evaluation board.

Review Completed

Retrospective B

KonnektBox - Sprint 3

Duration September 1-30, 2019
4G modem support

Add support for LTE/4G modems in KonnektBox (control and monitoring of
the connection).

Review Completed

Retrospective |8

KonnektBox - Sprint 4

Duration October 1-31, 2019
KonnektBox data pipelines

Add service to deploy custom data pipelines inside a KonnektBox (with
custom functions to perform data transformation and custom export
clients)

Review Completed

Retrospective B

rrm
r—

==
cD

D3.2 Refined requirements and integration plan
Version 1.0

D
-

|<

KonnektBox - Sprint 5
Duration November 1-30, 2019
KonnektBox-Nuvla integration

Integration of KonnektBox in Sixsq Nuvla.io platform to remotely deploy
services and monitor KonnektBox.

Review Completed

Retrospective B

KonnektBox - Sprint 6

Duration December 1-31, 2019
Design of interoperable data model

Design of the initial data model to be used by the edge/fog node for the
communication between nodes.

Review Completed

Retrospective B8

KonnektBox - Sprint 7

Duration January 1-31, 2020
Integration of dataClay component

Development of dataClay client REST API and integration of dataClay REST
component inside KonnektBox data pipeline.

Review Completed

Retrospective |8

KonnektBox - Sprint 8

Duration February 1-29, 2020
Documentation

Completion of the deliverable documents with the outcome of the
previous tasks.

Review Completed

Retrospective B

re
F—
==

D3.2 Refined requirements and integration plan
Version 1.0

(g

3.1.8 Nuvla/NuvlaBox — Fog computing architecture

Nuvla/NuvlaBox - Sprint 1

Duration June 1-30, 2019
Ability to register an existing container infrastructure into Nuvla

Develop the data models, APl workflows and GUI to allow users to register
new CaaS$ infrastructure in Nuvla

Review Completed

Retrospective |8

Nuvla/NuvlaBox - Sprint 2

Duration July 1-31, 2019
Create and release the first container-based version of the NuvlaBox

Develop set of microservices that are capable of turning any Docker-
compatible device into an edge device that can be managed from Nuvla

Review Completed

Retrospective |8

Nuvla/NuvlaBox - Sprint 3
Duration September 1-30, 2019
Deploy the NuvlaBox into an NVidia Jetson TX2

Check that the NuvlaBox can be deployed into the Use Cases devices
(Jetson TX2) and make use of GPUs via Docker.

Review Completed

Retrospective |8

Nuvla/NuvlaBox - Sprint 4

Duration October 1-31, 2019
Deploy the NuvlaBox into an NVidia Jetson TX2

Check that the NuvlaBox can be deployed into the use cases devices
(Jetson TX2) and make use of GPUs via Docker.

Review Completed

Retrospective |8

cD

rrm
F—

==
co

D3.2 Refined requirements and integration plan
Version 1.0

D
-

|<

Nuvla/NuvlaBox - Sprint 5
Duration November 1-30, 2019
Add Nuvla support for Kubernetes infrastructures

Apart from Docker CaaS$ infrastructures, let users also register Kubernetes
CaaS and deploy Kubernetes apps.

Review Completed

Retrospective |8

Nuvla/NuvlaBox - Sprint 6

Duration December 1, 2019 - February 29, 2020
Add Data Gateway to NuvlaBox

Implement a data routing mechanism to allow automatic ingestion and
digestion of raw sensor data, via MQTT.

Review Completed

Retrospective |8

Nuvla/NuvlaBox - Sprint 7

Duration January 15-31, 2020
Deploy dataClay into a NuvlaBox, from Nuvla

Take the dataClay compose file, register it as a new Nuvla application and
deploy it to a NuvlaBox. Check successful installation of dataClay.

Review Completed

G178 Had to convert the DataClay compose file to be Docker Swarm compatible

Nuvla/NuvlaBox - Sprint 8

Duration January 1 2020 (ongoing)
Provide Nuvla GUI for managing NuvlaBox Data Gateway

Implement the API calls to NuvlaBox such that users can turn on/off the
data routing, and also define the data models.

Review In progress

Retrospective |8

20

rrm
r—

==
cD

D3.2 Refined requirements and integration plan
Version 1.0

D
-

|<

Nuvla/NuvlaBox - Sprint 9
Duration February 1, 2020 (ongoing)
Allow application deployments with private Docker registries

Develop authentication models and workflow for user applications that
need to pull Docker images from private registries.

Review In progress

Retrospective |8

Nuvla/NuvlaBox - Sprint 10

Duration February 1, 2020 (ongoing)
Collect all fog metrics necessary for the NFR tool

Extend the existing fog manager/telemetry inside the NuvlaBox to also
publish the metrics needed by the NFR tool.

Review In progress

Retrospective |8

Nuvla/NuvlaBox - Sprint 11

Duration February 1-29, 2020
Documentation

Completion of the deliverable documents with the outcome of the
previous tasks.

Review Completed

Retrospective B

3.1.9 Software architecture validation for the use cases

Software architecture validation - Sprint 1

Duration October 1 - November 30, 2019
Platform

Multi-platform delivery environment: Linux OS, toolchain, deployment,
tooling of software

Review Completed

Retrospective |8

21

rrm
F—

==
co

D3.2 Refined requirements and integration plan
Version 1.0

D
-

|<

Software architecture validation - Sprint 2

Duration December 1 - January 31, 2019
Software architecture review

Software architecture review for optimization and software preparation
for future enhancements

Review Completed

Retrospective |8

3.1.10 Use case related sprints

Scrum-based methodology has also been adopted to develop the software and
hardware components of the Next Generation Autonomous Positioning (NGAP) and
the Advanced Driving Assistant System (ADAS) use cases by THALIT.

3.1.10.1 ADAS Use case

ADAS use case - Sprint 1

Duration March 1-31, 2019
Sensor: camera selection
Key features definition, selection, starting purchasing activities.

Review Completed

Retrospective |8

ADAS use case - Sprint 2
Duration April 1-30, 2019
Sensor: camera testing / Software tool for measurement analysis
Lab testing of camera. Software tool for sensor data analysis.

Review Completed

Retrospective |8

ADAS use case - Sprint 3
Duration May 1-31, 2019
Documentation
Documents finalization. Data fusion study and architecture definition.

Review Completed

Retrospective |8

22

D3.2 Refined requirements and integration plan
Version 1.0

rMm
F—
=
——]

co

(g

|<

ADAS use case - Sprint 4
Duration June 1-30, 2019
Radar characterization
Radar testing. Cluster vs objects outputs analysis.

Review Completed

Retrospective |8

ADAS use case - Sprint 5
Duration July 1-31, 2019
Camera characterization

Camera study, lab testing, homography mathematics.

Review Completed

Retrospective |8

ADAS use case - Sprint 6

Duration August 1-31, 2019
Sensor acquisition
More radar acquisition. Lidar definition and key features definition.

Review Completed

Retrospective |8

ADAS use case - Sprint 7

Duration September 1-30, 2019
Software tool upgrade
Improvement of measurements analysis tool.

Review Completed

Retrospective |8

ADAS use case - Sprint 8

Duration October 1-31, 2019
Installation and testing

Radar installation on tram vehicle 1013. GEST/Hitachi meetings and
technical agreements for equipment installation.

Review Completed /In progress

Radar installed. Hitachi agreement still pending, expected to be finalized

Retrospective in March 2020.

23

rrm
r—

==
cD

D3.2 Refined requirements and integration plan
Version 1.0

D
-

|<

ADAS use case - Sprint 9
Duration November 1-30, 2019
LIDAR characterization

Lidar lab tests and analysis. Design of bracket system to install sensor on
tram vehicles

Review Completed

Retrospective |8

ADAS use case - Sprint 10

Duration December 1-31, 2019
Data fusion algorithm and installation on vehicle

Initial data fusion study and analysis. Installation on UNIMOG (special
vehicle).

Review Completed

Retrospective |8

ADAS use case - Sprint 11
Duration January 1-31, 2020
Data fusion. UNIMOG

Data fusion study and analysis, architecture finalization. Field test with
UNIMOG. Project deliverable finalization.

Review Completed

Retrospective |8

ADAS use case - Sprint 12
Duration February 1, 2020 (ongoing)
Dataset acquisition software

Software upgrade for dataset acquisition and sensor driver upgrade. Field
test with vehicle 1013.

Review In progress

Retrospective |8

24

rrm
r—

==
cD

D3.2 Refined requirements and integration plan
Version 1.0

(g

3.1.10.2 NGAP use case

NGAP use case - Sprint 1
Duration March 1-31, 2019
Goal Real Time Kinematic (RTK) technique

RTK study. Provider definition and agreement. Tool for measurement
analysis design.

Review Completed

Retrospective |8

NGAP use case - Sprint 2
Duration April 1-30, 2019
Goal RTK, data fusion

RTK finalization and implementation of tool for measurement analysis.
Sensor fusion study and analysis. Rail track modelling.

Review Completed

Retrospective |8

NGAP use case - Sprint 3

Duration May 1-31, 2019
Goal Splines and project deliverables

Tool for measurement analysis testing. Sensor fusion architecture. Rail
track modelling with splines.

Review Completed

Retrospective |8

NGAP use case - Sprint 4

June 1-30, 2019

Loop data

m Along line loop data retrieval system definition for hardware and
software.

Completed

Retrospective|

Retrospective |8

25

D3.2 Refined requirements and integration plan
Version 1.0

rrm
r—

D
-
co

—

|<

NGAP use case - Sprint 5
Duration July 1-31, 2019
RADAR installation
RADAR installation on 1013, testing and measurement analysis. Tuning

Review Completed

Retrospective |8

NGAP use case - Sprint 6

Duration August 1-31, 2019

Test and software tuning
Field testing and measurements analysis. Tuning of software application.

Completed (testing is always ongoing because sensors continuously collect

Review data and they are retrieved by LTE channel).

Retrospective |8

NGAP use case - Sprint 7
Duration September 1 - October 31, 2019
NGAP software tool
Upgrade and tuning of measurement tool.

Review Completed

Retrospective |8

NGAP use case - Sprint 8

Duration November 1 - December 31, 2019

Sensor fusion implementation upgrade

Sensor fusion algorithm implementation upgrade and output verification
Review In progress

Retrospective |8

26

D3.2 Refined requirements and integration plan

Version 1.0 LN d 11V

NGAP use case - Sprint 9

Duration January 1, 2020 (ongoing)
Goal RTK installation

NGAP performance estimation in comparison with ground truth system
(RTK)

Review In progress

Verification of output will go on till sensors are installed and data

Retrospective [y

NGAP use case - Sprint 10

Duration February 1, 2020 (ongoing)
Goal Test field

Sensor fusion integration, testing and tuning

Review In progress

(GG)=l Testing will go on

3.2 Version control systems

Version control systems provide means for distributed teams to work collaboratively
together on shared documents. In this regard, the ELASTIC project started using two
different platforms: Apache Subversion (SVN) [4] and Git [5]. The SVN repository was
created at the beginning of the project, February 2019, in order to share
documentation (meeting minutes, papers, presentations, etc.), and it is still used
for the same purpose.

All partners stated the need to use a more complete platform for software
development, i.e., Git, because it joins several DevOps functionalities (e.g., version
control, issue tracking, distribution, etc.). BSC has set up a GitLab [6] instance
hosted in the BSC premises. In detail, a virtual machine was setup, with public access
https://bsccselastic01.bsc.es) and login-protected. The machine has 4 virtual
cores, 4GB RAM plus 4GB SWAP, a 60GB hard drive and Ubuntu 16.04 as the OS.
Currently, the GitLab instance installed in this machine, as shown in Figure 1,
contains three groups with different projects:

_

e Documents: for work-in-progress deliverables;

e ELASTIC-SA: for the development of the different software components of the
ELASTIC Software Architecture;

e Examples: for examples of applications and demos of the different software
components.

D3.2 Refined requirements and integration plan

Version 1.0 LLN d 11V
&p GitLab Projects v More v v Search or jump to... a 0D M E @ *23:24 v
Groups
Your groups Explore public groups Search by name Last created
> 0O D Documents © Developer o B Qo &3

o ELASTIC-SA © Developer e oo Rt &3

This group contains the software components of the ELASTIC Software Architecture

Examples ©

This group contains applications, examples and demos of the software components

Do [H1 &2

Figure 1. Screenshot of the ELASTIC GitLab groups

3.3 Continuous Integration (Cl) system

A Jenkins [7] server has been installed in the BSC machine hosting the GitLab
instance, in order to test both some isolated components (e.g., COMPSs, NFR tool),
as well as the integration among them. The Jenkins interface is shown in Figure 2.

Even though no tests have been included so far, the Jenkins platform will be used
during the third phase of the project, along with any other Cl tools (e.g., GitLab Cl)
already used by each of the ELASTIC partners.

Jenkins ENABLE AUTO REFRESH

& New ltem (#add description

& Peope Welcome to Jenkins!

.~ Build History .
Please create new jobs to get started.

o Manage Jenkins

&‘ My Views

‘;k Lockable Resources

4. Credentials

BB New View

Build Queue =

No builds in the queue.

Build Executor Status =

1 Idle

Figure 2. Screenshot of the ELASTIC Jenkins server.

28

D3.2 Refined requirements and integration plan

Version 1.0 LN d 1 1VY

3.4 Instant messaging and transparency

The distributed nature of the ELASTIC team enforces a mechanism to ensure agile
communications and transparency. In this regard, BSC has set up a Slack [8]
workspace on October 2019 to integrate team communications in one place. Slack
offers, among others, the possibility of creating channels of communication,
organized by topics, or to send direct messages, as shown in Figure 3.

n ~ et L@ & as @ i
? | 816 | %0 | & Adda topic
r T URUK MNovember 28th, 2019
Za Jump to...
o = About this channel X
p) "72732 o - (i) Channel Details 4
2 12:58 PM -
Chann q = ‘4 Highlights ’
Monday, January 13th Pinned ltems >
n 12:22 PM
2 16 Members 4
. it Apps »
. Shared Files J
1\ Notification Preferences 4

Tuesday, January 21st

p 10:36 AM
joined #use-case.

Figure 3. Screenshot of the ELASTIC Slack workspace.

During phase 2, the ELASTIC partners have used Slack to share code snippets,
documents and messages. Some usage statistics towards the end of phase 2 are
shown as an example in Figure 4.

29

D3.2 Refined requirements and integration plan

Version 1.0 LN d 11
oo
Q) ELASTIC 7 8 ©
Subscriptions Workspaces Help

Analytics

Overview Channels Members

Updated 1dayaze | () Last 30days ~ Export
All-time usage

Messages sent File storage used

1,750 271 we

out of 10,000 messages out of 5.0 GB of file storage

- [|

11,032 messages (+143.7%) over the 1201 MB (+286.5%) over the last 30
last 30 days. days.

£ Active members

See how many people are active - meaning they've viewed at least
one public channel

Weekly Daily

Figure 4. Usage analytics for the ELASTIC Slack workspace during the end of phase 2

3.5 Pending issues

Some pending issues still remain regarding the integration plan, and are described
below:

e Testing with Cl system: Even though some steps have been already made
towards ClI testing, the ELASTIC consortium is still in the process of properly
automating the testing process for the evaluation of the current
implementation. It is expected that during phase 3, the partners involved in
the integration of the ELASTIC software architecture will implement unit tests
on the Jenkins platform (or in any other Cl system that may be more suitable
to the partners’ workflows).

e Bug and issue tracking: So far, the partners have used their own internal
systems to track issues. However, during the third phase of ELASTIC, it is
planned to include all bug and issue tracking information in the project’s
GitLab, thus centralizing the development of the code and facilitating the
collaboration between partners.

30

D3.2 Refined requirements and integration plan

Version 1.0 LN d 1 1VY

4. Acronyms and Abbreviations

Each term should be bulleted with a definition.
Below is an initial list that should be adapted to the given deliverable.

ADAS - Advanced Driving Assistant System

API - Application Program Interface

Caas - Container as a Service

CI - Continuous Integration

D - deliverable

DDAP - Distributed Data Analytics Platform

GPU - Graphics Processing Unit

GUI - Graphical User Interface

LIDAR - Light Detection and Ranging

M - Month

MQTT - MQ Telemetry Transport

MS - Milestones

NFR - Non-Functional Requirements

NGAP - Next Generation Autonomous Positioning
RTK - Real Time Kinematics

SCAP - Security Content Automation Protocol
SRIA - Strategic Research and Innovation Agenda (SRIA)
SVN - Apache Subversion

WP - Work Package

5. References

[1] ELASTIC, "D3.1 Software architecture requirements and integration plan,” May
2019.

[2] ELASTIC, "D3.3 ELASTIC software architecture - First release,” February 2020.

[3] K. Schwaber and M. Beedle, Agile Software Development with Scrum, NJ, United
States: Prentice Hall PTR, Upper Saddle River, ISBN: 978-0-13-067634-4, 2001.

[4] "Apache Subversion "Enterprise-class centralized version control for the
masses”,"” [Online]. Available: https://subversion.apache.org/.

[5] git. [Online]. Available: https://git-scm.com/.

[6] "Gitlab. The entire DevOps lifecycle in one application.,” [Online]. Available:
https://about.gitlab.com/.

[7] "Jenkins,” 2018. [Online]. Available: https://jenkins.io.

[8] "Slack, «Where work happens»,” 2019. [Online]. Available: www.slack.com.

31

	Change Log
	1. Executive Summary
	2. Requirements of the ELASTIC Software Architecture
	3. Development and integration plan
	3.1 Scrum-based methodology
	3.1.1 Distributed data analytics platform
	3.1.2 COMPSs orchestrator
	3.1.3 dataClay – Distributed Storage
	3.1.4 Energy and time non-functional requirements – NFR tool
	3.1.5 Communication and security non-functional requirements – NFR tool
	3.1.6 Communication middleware – Fog computing architecture
	3.1.7 KonnektBox – Fog computing architecture
	3.1.8 Nuvla/NuvlaBox – Fog computing architecture
	3.1.9 Software architecture validation for the use cases
	3.1.10 Use case related sprints
	3.1.10.1 ADAS Use case
	3.1.10.2 NGAP use case

	3.2 Version control systems
	3.3 Continuous Integration (CI) system
	3.4 Instant messaging and transparency
	3.5 Pending issues

	4. Acronyms and Abbreviations
	5. References

